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Chromatic number vs clique number
χ chromatic number of a given graph
ω clique number (= max. size of a clique) of a given graph
Obvious inequality: χ > ω
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ω clique number (= max. size of a clique) of a given graph
Obvious inequality: χ > ω

Theorem (Zykov, Tutte, Mycielski. . . )
There exist triangle-free graphs (= graphs with ω = 2)
with arbitrarily large chromatic number.

Theorem (Kim 1995)
There exist triangle-free graphs with chromatic number
Θ(

√
n/ logn).
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χ chromatic number of a given graph
ω clique number (= max. size of a clique) of a given graph
Obvious inequality: χ > ω

Theorem (Zykov, Tutte, Mycielski. . . )
There exist triangle-free graphs (= graphs with ω = 2)
with arbitrarily large chromatic number.

Theorem (Kim 1995)
There exist triangle-free graphs with chromatic number
Θ(

√
n/ logn).

What happens for classes of graphs with geometric
representations?
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Geometric intersection graphs

A geometric intersection graph has some geometric objects
as vertices and all pairs of intersecting objects as edges.

rectangle graphs
interval graphs

frame graphs

circle graphs segment graphs string graphs
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Chromatic number of geometric intersection graphs

Theorem (folklore)
Interval graphs satisfy χ = ω (they are perfect).
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Chromatic number of geometric intersection graphs

Theorem (folklore)
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A class of graphs G is χ-bounded if there is a function
f : N → N such that χ 6 f(ω) for every graph in G.
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Chromatic number of geometric intersection graphs

Theorem (folklore)
Interval graphs satisfy χ = ω (they are perfect).

A class of graphs G is χ-bounded if there is a function
f : N → N such that χ 6 f(ω) for every graph in G.

Theorem (Asplund, Grünbaum 1960)
The class of rectangle graphs is χ-bounded.

Theorem (Gyárfás 1985)
The class of circle graphs is χ-bounded.
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Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames,
L-figures, segments etc. with chromatic number Θ(log logn).

Theorem (Burling 1965)
There are triangle-free intersection graphs of boxes in R3

with chromatic number Θ(log logn).

Theorem (Krawczyk, W 2017)
There are string graphs with chromatic number
Θω((log logn)ω−1).

Geometric intersection graphs with large chromatic number
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Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames,
L-figures, segments etc. with chromatic number Θ(log logn).

Theorem (Burling 1965)
There are triangle-free intersection graphs of boxes in R3

with chromatic number Θ(log logn).

Theorem (Krawczyk, W 2017)
There are string graphs with chromatic number
Θω((log logn)ω−1).

Are these constructions optimal? Are they “unique”?

Geometric intersection graphs with large chromatic number
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Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames,
L-figures, segments etc. with chromatic number Θ(log logn).

“Uniqueness” of the construction

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function f : N → N such that every triangle-free
string graph with chromatic number at least f(k) contains
the kth graph of the construction as an induced subgraph.
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This is not true for Burling’s construction of boxes in R3!
(Reed, Allwright 2008; Magnant, Martin 2011)
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Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames,
L-figures, segments etc. with chromatic number Θ(log logn).

“Uniqueness” of the construction

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function f : N → N such that every triangle-free
string graph with chromatic number at least f(k) contains
the kth graph of the construction as an induced subgraph.

“We have little faith in this conjecture.”

Intermediate goal: Upper bounds like O((log logn)c)

This is not true for Burling’s construction of boxes in R3!
(Reed, Allwright 2008; Magnant, Martin 2011)
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Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic
number O(log logn).

Upper bounds on the chromatic number
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Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic
number O(log logn).

Upper bounds on the chromatic number

Idea: Reduce to the case of “downward” intersections.
Then, apply an on-line O(log `)-coloring algorithm to each
branch of the underlying tree, where ` is some measure of
the length of the branch such that ` = O(logn).
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Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic
number O(log logn).

Theorem (McGuinness 1996 / Suk 2014 / Rok, W 2014)
Intersection graphs of L-figures / segments / x-monotone
curves have chromatic number Oω(logn).

Upper bounds on the chromatic number

Theorem (Krawczyk, W 2017)
Intersection graphs of frames have chromatic number
Oω((log logn)ω−1).
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Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic
number O(log logn).

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures
have chromatic number O(log log n).

Theorem (McGuinness 1996 / Suk 2014 / Rok, W 2014)
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Coloring triangle-free L-figures

Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function f : N → N such that every string graph
G contains a vertex v such that the vertices at distance 6 2
from v in G have chromatic number > χ(G)/f(ω(G)).

We prove that the L-figures at distance 2 from a fixed
L-figure v have chromatic number O(log logn).
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Coloring triangle-free L-figures

Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function f : N → N such that every string graph
G contains a vertex v such that the vertices at distance 6 2
from v in G have chromatic number > χ(G)/f(ω(G)).

We prove that the L-figures at distance 2 from a fixed
L-figure v have chromatic number O(log logn).

v

Theorem (McGuinness 1996)
The class of intersection graphs
of L-figures crossing a fixed line
is χ-bounded.
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Coloring triangle-free L-figures

Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function f : N → N such that every string graph
G contains a vertex v such that the vertices at distance 6 2
from v in G have chromatic number > χ(G)/f(ω(G)).

We prove that the L-figures at distance 2 from a fixed
L-figure v have chromatic number O(log logn).

v

v v

key case equivalent
to key case

recursion +
an additional trick
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Coloring triangle-free L-figures at distance 2, key case
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left part

Coloring triangle-free L-figures at distance 2, key case
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middle part

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds. . .



right part

Coloring triangle-free L-figures at distance 2, key case
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Coloring triangle-free L-figures at distance 2, key case
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1. Color to distinguish the left-left intersections

Coloring triangle-free L-figures at distance 2, key case

Theorem (McGuinness 2000; Suk 2014; Rok, W 2014)
The class of intersection graphs of grounded curves is
χ-bounded.
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1. Color to distinguish the left-left intersections

Coloring triangle-free L-figures at distance 2, key case
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1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections

Coloring triangle-free L-figures at distance 2, key case

We will show how to do this using O(log logn) colors.
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1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections

Coloring triangle-free L-figures at distance 2, key case
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1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections
3. Color to distinguish the left-right intersections

Coloring triangle-free L-figures at distance 2, key case

Theorem (Rok, W 2017)
The class of intersection graphs of multi-grounded curves,
where only the left-most and the right-most upper parts of
the curves are allowed to intersect, is χ-bounded.
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Coloring to distinguish the left-middle intersections

Assumptions:
1. The right parts are empty
2. The left parts are pushed to the right as far as possible
3. There are no extension blockers
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Coloring to distinguish the left-middle intersections

Assumptions:
1. The right parts are empty
2. The left parts are pushed to the right as far as possible
3. There are no extension blockers
We use a special color green on L-figures whose vertical legs
intersect no other L-figures (including the green ones).
We try to “close” the remaining L-figures into frames.
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Coloring to distinguish the left-middle intersections

Assumptions:
1. The right parts are empty
2. The left parts are pushed to the right as far as possible
3. There are no extension blockers
We use a special color green on L-figures whose vertical legs
intersect no other L-figures (including the green ones).
We try to “close” the remaining L-figures into frames.

extension blocker
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Coloring to distinguish the left-middle intersections

Assumptions:
1. The right parts are empty
2. The left parts are pushed to the right as far as possible
3. There are no extension blockers
We use a special color green on L-figures whose vertical legs
intersect no other L-figures (including the green ones).
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Coloring to distinguish the left-middle intersections

Assumptions:
1. The right parts are empty
2. The left parts are pushed to the right as far as possible
3. There are no extension blockers
We use a special color green on L-figures whose vertical legs
intersect no other L-figures (including the green ones).
We try to “close” the remaining L-figures into frames.
We end up with a downward-directed family of frames.
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic
number O(log logn).
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Coloring triangle-free L-figures at distance 2, other cases

v
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Coloring triangle-free L-figures at distance 2, other cases

χ 6 4

initial coloring of
all L-figures

v

v1

v2
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Generalizations?

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic
number O(log logn).

1. Generalization to higher clique number — ???
2. Extension to other kinds of figures — some ideas
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Generalizations?

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic
number O(log logn).

1. Generalization to higher clique number — ???
2. Extension to other kinds of figures — some ideas

Again, it suffices to bound the chromatic number of the
segments at distance 2 from a fixed segment v.
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Coloring triangle-free segments at distance 2

???
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Coloring triangle-free segments at distance 2
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Coloring triangle-free segments at distance 2

left part
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Coloring triangle-free segments at distance 2

middle part
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Coloring triangle-free segments at distance 2

right part
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Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections — as before
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Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections — as before
2. Distinguishing right-right intersections — analogously

Bartosz Walczak Towards double-logarithmic upper bounds. . .



Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections — as before
2. Distinguishing right-right intersections — analogously
3. Distinguishing middle-middle intersections — ???
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Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections — as before
2. Distinguishing right-right intersections — analogously
3. Distinguishing middle-middle intersections — ???
4. Distinguishing left-middle intersections

???as before (!)
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Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections — as before
2. Distinguishing right-right intersections — analogously
3. Distinguishing middle-middle intersections — ???
4. Distinguishing left-middle intersections
5. Distinguishing middle-right intersections — analogously
6. Distinguishing left-right intersections — as before
This approach, if successful, can lead to an upper bound of
the form χ = O((log logn)c) for some large constant c.
Any ideas how to approach the bound χ = O(log logn)?
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