Towards double-logarithmic upper bounds on the chromatic number of triangle-free geometric intersection graphs

Bartosz Walczak
Jagiellonian University in Kraków

Chromatic number vs clique number
χ chromatic number of a given graph
ω clique number (= max. size of a clique) of a given graph
Obvious inequality: $\chi \geqslant \omega$

Chromatic number vs clique number
χ chromatic number of a given graph
ω clique number (= max. size of a clique) of a given graph
Obvious inequality: $\chi \geqslant \omega$
Theorem (Zykov, Tutte, Mycielski...)
There exist triangle-free graphs (= graphs with $\omega=2$) with arbitrarily large chromatic number.

Theorem (Kim 1995)
There exist triangle-free graphs with chromatic number $\Theta(\sqrt{n / \log n})$.

Chromatic number vs clique number
χ chromatic number of a given graph
ω clique number (= max. size of a clique) of a given graph
Obvious inequality: $\chi \geqslant \omega$
Theorem (Zykov, Tutte, Mycielski...)
There exist triangle-free graphs (= graphs with $\omega=2$) with arbitrarily large chromatic number.

Theorem (Kim 1995)
There exist triangle-free graphs with chromatic number $\Theta(\sqrt{n / \log n})$.

What happens for classes of graphs with geometric representations?

Geometric intersection graphs
A geometric intersection graph has some geometric objects as vertices and all pairs of intersecting objects as edges.

Chromatic number of geometric intersection graphs
Theorem (folklore)
Interval graphs satisfy $\chi=\omega$ (they are perfect).

Chromatic number of geometric intersection graphs
Theorem (folklore)
Interval graphs satisfy $\chi=\omega$ (they are perfect).
A class of graphs \mathcal{G} is χ-bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi \leqslant f(\omega)$ for every graph in \mathcal{G}.

Chromatic number of geometric intersection graphs
Theorem (folklore)
Interval graphs satisfy $\chi=\omega$ (they are perfect).
A class of graphs \mathcal{G} is χ-bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\chi \leqslant f(\omega)$ for every graph in \mathcal{G}.

Theorem (Asplund, Grünbaum 1960)
The class of rectangle graphs is χ-bounded.
Theorem (Gyárfás 1985)
The class of circle graphs is χ-bounded.

Geometric intersection graphs with large chromatic number
Theorem (Burling 1965)
There are triangle-free intersection graphs of boxes in \mathbb{R}^{3} with chromatic number $\Theta(\log \log n)$.

Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Theorem (Krawczyk, W 2017)
There are string graphs with chromatic number
$\Theta_{\omega}\left((\log \log n)^{\omega-1}\right)$.

Geometric intersection graphs with large chromatic number
Theorem (Burling 1965)
There are triangle-free intersection graphs of boxes in \mathbb{R}^{3} with chromatic number $\Theta(\log \log n)$.

Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Theorem (Krawczyk, W 2017)
There are string graphs with chromatic number
$\Theta_{\omega}\left((\log \log n)^{\omega-1}\right)$.
Are these constructions optimal? Are they "unique"?
"Uniqueness" of the construction
Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every triangle-free string graph with chromatic number at least $f(k)$ contains the k th graph of the construction as an induced subgraph.
"Uniqueness" of the construction
Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every triangle-free string graph with chromatic number at least $f(k)$ contains the k th graph of the construction as an induced subgraph.
"We have little faith in this conjecture."
"Uniqueness" of the construction
Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every triangle-free string graph with chromatic number at least $f(k)$ contains the k th graph of the construction as an induced subgraph.
"We have little faith in this conjecture."
This is not true for Burling's construction of boxes in \mathbb{R}^{3} !
(Reed, Allwright 2008; Magnant, Martin 2011)
"Uniqueness" of the construction
Theorem (Pawlik et al. 2013)
There are triangle-free intersection graphs of frames, L-figures, segments etc. with chromatic number $\Theta(\log \log n)$.

Conjecture (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every triangle-free string graph with chromatic number at least $f(k)$ contains the k th graph of the construction as an induced subgraph.
"We have little faith in this conjecture."
This is not true for Burling's construction of boxes in \mathbb{R}^{3} !
(Reed, Allwright 2008; Magnant, Martin 2011)
Intermediate goal: Upper bounds like $O\left((\log \log n)^{c}\right)$

Upper bounds on the chromatic number
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Upper bounds on the chromatic number
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Idea: Reduce to the case of "downward" intersections. Then, apply an on-line $O(\log \ell)$-coloring algorithm to each branch of the underlying tree, where ℓ is some measure of the length of the branch such that $\ell=O(\log n)$.

Upper bounds on the chromatic number
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Theorem (Krawczyk, W 2017)
Intersection graphs of frames have chromatic number $O_{\omega}\left((\log \log n)^{\omega-1}\right)$.

Theorem (McGuinness 1996 / Suk 2014 / Rok, W 2014) Intersection graphs of L-figures / segments / x-monotone curves have chromatic number $O_{\omega}(\log n)$.

Upper bounds on the chromatic number
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Theorem (Krawczyk, W 2017)
Intersection graphs of frames have chromatic number $O_{\omega}\left((\log \log n)^{\omega-1}\right)$.

Theorem (McGuinness 1996 / Suk 2014 / Rok, W 2014) Intersection graphs of L-figures / segments / x-monotone curves have chromatic number $O_{\omega}(\log n)$.

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic number $O(\log \log n)$.

Upper bounds on the chromatic number
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic number $O(\log \log n)$.

Coloring triangle-free L-figures
Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every string graph G contains a vertex v such that the vertices at distance $\leqslant 2$ from v in G have chromatic number $\geqslant \chi(G) / f(\omega(G))$.

We prove that the L-figures at distance 2 from a fixed L-figure v have chromatic number $O(\log \log n)$.

Coloring triangle-free L-figures
Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every string graph
G contains a vertex v such that the vertices at distance $\leqslant 2$ from v in G have chromatic number $\geqslant \chi(G) / f(\omega(G))$.

We prove that the L-figures at distance 2 from a fixed L-figure v have chromatic number $O(\log \log n)$.

Theorem (McGuinness 1996)
The class of intersection graphs of L-figures crossing a fixed line is χ-bounded.

Coloring triangle-free L-figures
Theorem (Chudnovsky, Scott, Seymour 2018+)
There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every string graph G contains a vertex v such that the vertices at distance $\leqslant 2$ from v in G have chromatic number $\geqslant \chi(G) / f(\omega(G))$.

We prove that the L-figures at distance 2 from a fixed L-figure v have chromatic number $O(\log \log n)$.

key case

equivalent
to key case

recursion +
an additional trick

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free L-figures at distance 2, key case

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free L-figures at distance 2, key case

1. Color to distinguish the left-left intersections Theorem (McGuinness 2000; Suk 2014; Rok, W 2014) The class of intersection graphs of grounded curves is χ-bounded.

Coloring triangle-free L-figures at distance 2, key case

1. Color to distinguish the left-left intersections

Coloring triangle-free L-figures at distance 2, key case

1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections We will show how to do this using $O(\log \log n)$ colors.

Coloring triangle-free L-figures at distance 2, key case

1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections

Coloring triangle-free L-figures at distance 2, key case

1. Color to distinguish the left-left intersections
2. Color to distinguish the left-middle intersections
3. Color to distinguish the left-right intersections

Theorem (Rok, W 2017)
The class of intersection graphs of multi-grounded curves, where only the left-most and the right-most upper parts of the curves are allowed to intersect, is χ-bounded.

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames.

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring to distinguish the left-middle intersections

Assumptions:

1. The right parts are empty

2. The left parts are pushed to the right as far as possible
3. There are no extension blockers

We use a special color green on L-figures whose vertical legs intersect no other L-figures (including the green ones). We try to "close" the remaining L-figures into frames. We end up with a downward-directed family of frames.
Theorem (Krawczyk, Pawlik, W 2015)
Triangle-free intersection graphs of frames have chromatic number $O(\log \log n)$.

Coloring triangle-free L-figures at distance 2, other cases

Coloring triangle-free L-figures at distance 2, other cases

initial coloring of all L-figures

Bartosz Walczak Towards double-logarithmic upper bounds...

Generalizations?

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic number $O(\log \log n)$.

1. Generalization to higher clique number - ???
2. Extension to other kinds of figures - some ideas

Generalizations?

Theorem (W 2018+)
Triangle-free intersection graphs of L-figures have chromatic number $O(\log \log n)$.

1. Generalization to higher clique number - ???
2. Extension to other kinds of figures - some ideas

Again, it suffices to bound the chromatic number of the segments at distance 2 from a fixed segment v.

Coloring triangle-free segments at distance 2

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free segments at distance 2

Coloring triangle-free segments at distance 2

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free segments at distance 2

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free segments at distance 2

Bartosz Walczak Towards double-logarithmic upper bounds...

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously
3. Distinguishing middle-middle intersections - ???

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously
3. Distinguishing middle-middle intersections - ???
4. Distinguishing left-middle intersections

as before (!)

???

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously
3. Distinguishing middle-middle intersections - ???
4. Distinguishing left-middle intersections
5. Distinguishing middle-right intersections - analogously

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously
3. Distinguishing middle-middle intersections - ???
4. Distinguishing left-middle intersections
5. Distinguishing middle-right intersections - analogously
6. Distinguishing left-right intersections - as before

Coloring triangle-free segments at distance 2

1. Distinguishing left-left intersections - as before
2. Distinguishing right-right intersections - analogously
3. Distinguishing middle-middle intersections - ???
4. Distinguishing left-middle intersections
5. Distinguishing middle-right intersections - analogously
6. Distinguishing left-right intersections - as before

This approach, if successful, can lead to an upper bound of the form $\chi=O\left((\log \log n)^{c}\right)$ for some large constant c. Any ideas how to approach the bound $\chi=O(\log \log n)$?

