Exchange operations on noncrossing spanning trees

Csaba D. Tóth

Cal State Northridge, Los Angeles, CA and Tufts University, Medford, MA

Spanning Trees - Elementary Operations

abstract spanning tree $=$ connected graph on n

 vertices that does not contain cycles.There are n^{n-2} spanning trees on n labeled vertices [Cayley, 1889]

Exchange property for graphic maroids:
If $T_{1}=\left(V, E_{1}\right)$ and $T_{2}=\left(V, E_{2}\right)$ are spanning trees,
$\forall e_{1} \in E_{1} \exists e_{2} \in E_{2}:\left(V, E_{1}-e_{1}+e_{2}\right)$ is a spanning tree.
For $n \geq 4$, there exist two edge-disjoint spanning trees. So the diameter of the exchange graph equals $n-1$.

Spanning Trees - Elementary Operations

plane spanning tree $=$ a straight-line spanning tree on n points in the plane, no two edges cross.
$S=$ set of n points in general position in \mathbb{R}^{2},
$\mathcal{T}(S)=$ set of plane spanning trees on S.
For $|S|=n$,

$$
\Omega\left(12.54^{n}\right) \leq \max _{|S|=n}|\mathcal{T}(S)| \leq O\left(141.07^{n}\right) .
$$

[Huemer and de Mier, 2015; Hoffmann et al. 2013]

- The matroid exchange may introduce crossings!
- We restrict exchanges to plane spanning trees.

Spanning Trees - Elementary Operations

Let $T_{1}=\left(S, E_{1}\right)$ and $T_{2}=\left(S, E_{2}\right)$ be two trees in $\mathcal{T}(S)$.
The operation that replaces T_{1} by T_{2} is

- an exchange if there are edges e_{1} and e_{2} such that $E_{1} \backslash E_{2}=\left\{e_{1}\right\}$ and $E_{2} \backslash E_{1}=\left\{e_{2}\right\}$ (i.e., delete an edge e_{1} from E_{1} and insert a new edge e_{2}).
- A compatible exchange is an exchange such that the graph $\left(S, E_{1} \cup E_{2}\right)$ is a noncrossing straight-line graph (i.e., e_{1} and e_{2} do not cross).
- A rotation is a compatible exchange such that e_{1} and e_{2} have a common endpoint $p=e_{1} \cap e_{2}$.
- An empty-triangle rotation is a rotation such that the edges of neither T_{1} nor T_{2} intersect the interior of the triangle $\Delta(p q r)$ formed by the vertices of e_{1} and e_{2}.
- An edge slide is an empty-triangle rotation such that $q r \in E_{1} \cap E_{2}$.

Spanning Trees - Elementary Operations

Rotation

Exchange

Compatible Exchange

Empty-Triangle Rotation

Edge Slide

Spanning Trees - Elementary Operations

All five operations define connected transition graphs for every point set in general position.

Operation	Single Operation Upper Bound	Single Operation Lower Bound
Exchange	$2 n-4$	$\left\lfloor\frac{3 n}{2}\right\rfloor-5\left[\mathrm{HHM}^{+}\right.$99]
Compatible Ex.	$2 n-4$	$\left\lfloor\frac{3 n}{2}\right\rfloor-5$
Rotation	$2 n-4[$ AF96]	$\left\lfloor\frac{3 n}{2}\right\rfloor-4$
Empty-Tri. Rot.	$O(n \log n)$	$\left\lfloor\frac{3 n}{2}\right\rfloor-4$
Edge Slide	$O\left(n^{2}\right)[$ AR07]	$\Omega\left(n^{2}\right)$ [AR07]

Current upper and lower bounds for the diameter

Spanning Trees - Simultaneous Operations

Upper and lower bounds for the diameter under simultaneous operations.

Operation	Simultaneous Upper Bound	Simultaneous Lower Bound
Exchange	1	1
Compatible Ex.	$O(\log n)$ [AAH02]	$\Omega\left(\frac{\log n}{\log \log n}\right)\left[\mathrm{BRU}^{+} 09\right]$
Rotation	$O(\log n)$	$\Omega\left(\frac{\log n}{\log \log n}\right)$
Empty-Tri. Rot.	$8 n$	$\Omega(\log n)$
Edge Slide	$O\left(n^{2}\right)[\mathrm{AR07]}$	$\Omega(n)$

Convex Position		
Empty-Tri. Rot.	4	3
Edge Slide	$O(\log n)$	$\Omega(\log n)$

Spanning Trees - Exchange Operation

Lower bound construction:
It takes $\left\lfloor\frac{3 n}{2}\right\rfloor-5$ exchanges to transform T_{1} to T_{2}.
[Hernando, Hurtado, Márquez,
Mora, and Noy, 1999]

Spanning Trees - Exchange Operation

Lower bound construction:
It takes $\left\lfloor\frac{3 n}{2}\right\rfloor-5$ exchanges to transform T_{1} to T_{2}.
[Hernando, Hurtado, Márquez, Mora, and Noy, 1999]

The same consturction gives a lower bound of $\left\lfloor\frac{3 n}{2}\right\rfloor-4$ for rotation operations.

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]
Let v be a vertex on the convex hull.
 While T is not a star centered at v,

- v sees an entire edge $a b$.
- Rotate $a b$ to $a v$ or $b v$.

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]
Let v be a vertex on the convex hull.
 While T is not a star centered at v,

- v sees an entire edge $a b$.
- Rotate $a b$ to $a v$ or $b v$.

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]
Let v be a vertex on the convex hull.
 While T is not a star centered at v,

- v sees an entire edge $a b$.
- Rotate $a b$ to $a v$ or $b v$.

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]
Let v be a vertex on the convex hull.
 While T is not a star centered at v,

- v sees an entire edge $a b$.
- Rotate $a b$ to $a v$ or $b v$.

Spanning Trees - Exchange Operation

$n-2$ exchanges can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter $\leq 2 n-4$
[Avis \& Fukuda, 1996]
Let v be a vertex on the convex hull.
 While T is not a star centered at v,

- v sees an entire edge $a b$.
- Rotate $a b$ to $a v$ or $b v$.

For $n \geq 3$ points in convex position: diameter $\leq \frac{23 n}{12}-5$.
[Lonner \& T., 2018]

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T.
For every triangle Δ along ℓ (in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves.
$f(n) \leq 3 n+2 f(n / 2)$
\Rightarrow Diameter is $O(n \log n)$
Let ℓ be a halving line. Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$
\Rightarrow Diameter is $O(n \log n)$
Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$
\Rightarrow Diameter is $O(n \log n)$
Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$
\Rightarrow Diameter is $O(n \log n)$
Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along ℓ
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Spanning Trees - Empty-Triangle Rotation

At most $3 n$ empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3 n+2 f(n / 2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T.
For every triangle Δ along ℓ (in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Simultaneous Empty-Triangle Rotation

At most $3 n$ empty triangle rotations can remove all but one edges between the two halves.
$f(n) \leq 3 n+f(n / 2)$
\Rightarrow Diameter is $O(n)$
Let ℓ be a halving line.
Triangulate T.
For every triangle Δ along T
(in stabbing order),

- If the first edge of Δ crossed by ℓ is in T, then replace it with another edge of Δ.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Simultaneous Empty Triangle Rotations

$\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:
Tree T_{1} contains a horizontal edge $p q$.
Tree T_{2} is a star centered at r.

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations
can transform any plane graph
into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)

Spanning Trees - Simultaneous Rotations

$O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.
\Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p=(0,-\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify (p)
starify (p) maintains a plane spanning tree. The sum of "discretre" horizontal extents all edges decreases by a factor of $\frac{1}{2}$.
\Rightarrow Algo. terminates after $O(\log n)$ moves.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Simultaneous Rotations

Each iteration of starify (p)
can be implemented in at most 4 simultaneous rotations.

Spanning Trees - Elementary Operations

All five operations define connected transition graphs for every point set in general position.

Operation	Single Operation Upper Bound	Single Operation Lower Bound
Exchange	$2 n-4$	$\left\lfloor\frac{3 n}{2}\right\rfloor-5\left[\mathrm{HHM}^{+}\right.$99]
Compatible Ex.	$2 n-4$	$\left\lfloor\frac{3 n}{2}\right\rfloor-5$
Rotation	$2 n-4[$ AF96]	$\left\lfloor\frac{3 n}{2}\right\rfloor-4$
Empty-Tri. Rot.	$O(n \log n)$	$\left\lfloor\frac{3 n}{2}\right\rfloor-4$
Edge Slide	$O\left(n^{2}\right)[$ AR07]	$\Omega\left(n^{2}\right)$ [AR07]

Current upper and lower bounds for the diameter

Spanning Trees - Simultaneous Operations

Upper and lower bounds for the diameter under simultaneous operations.

Operation	Simultaneous Upper Bound	Simultaneous Lower Bound
Exchange	1	1
Compatible Ex.	$O(\log n)$ [AAH02]	$\Omega\left(\frac{\log n}{\log \log n}\right)\left[\mathrm{BRU}^{+} 09\right]$
Rotation	$O(\log n)$	$\Omega\left(\frac{\log n}{\log \log n}\right)$
Empty-Tri. Rot.	$8 n$	$\Omega(\log n)$
Edge Slide	$O\left(n^{2}\right)[\mathrm{AR07]}$	$\Omega(n)$

Convex Position		
Empty-Tri. Rot.	4	3
Edge Slide	$O(\log n)$	$\Omega(\log n)$

Reconstuct Crossings from Plane Spanning Trees

$S=$ set of n points in general position in \mathbb{R}^{2}, $\mathcal{T}(S)=$ set of plane spanning trees on S.
$K(S)=$ complete geometric graph on S.
Keller \& Perles [2016]: Given the exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the intersection graph of the edges of $K(S)$. In other words, the exchange graph determines which pairs of edges of $K(S)$ cross.

Reconstuct Crossings from Plane Spanning Trees

$S=$ set of n points in general position in \mathbb{R}^{2},
$\mathcal{T}(S)=$ set of plane spanning trees on S.
$K(S)=$ complete geometric graph on S.
Keller \& Perles [2016]: Given the exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the intersection graph of the edges of $K(S)$. In other words, the exchange graph determines which pairs of edges of $K(S)$ cross.

Oropeza \& T. [2018]: Given the compatible exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the intersection graph of the edges of $K(S)$.
In other words, the compatoble exchange graph determines which pairs of edges of $K(S)$ cross.

Open Problems

Improve the diameter bounds for the "tree graphs."

- Are $\left\lfloor\frac{3}{2} n\right\rfloor$ exchange operations enough to transform a plane spanning tree to any other plane spanning tree?
- Is the diameter for empty-triangle rotation $O(n)$?
- Is the diameter for simultanous edge slides $\Theta(n)$, or $\Theta\left(n^{2}\right)$, or something in between?

Transformation graphs for other variants:

- Is the space of plane spanning trees of max degee $\leq k$ connected under any or all of the five operations?
- If the edges have unique labels, can these operations "shuffle" the labels arbitrarily?

Open Problems

Reconstruction of intersection pattens from "tree graphs."

- Does the transition graph of rotations contain enough informartion to reconstruct the intersection graph of the edges of $K(S)$?
- For finding a possible counterexample, we need to generate finite point sets $S_{1}, S_{2} \subset \mathbb{R}^{2}$ such that $\left|S_{1}\right|=\left|S_{2}\right|,\left|\mathcal{T}\left(S_{1}\right)\right|=\left|\mathcal{T}\left(S_{2}\right)\right|$, and the intersection patterns of $K\left(S_{1}\right)$ and $K\left(S_{2}\right)$ are different.

Thank you for your attention!

