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Spanning Trees — Elementary Operations

There are nn−2 spanning trees on n labeled vertices
[Cayley, 1889]

Exchange property for graphic maroids:
If T1 = (V,E1) and T2 = (V,E2) are spanning trees,
∀e1 ∈ E1 ∃e2 ∈ E2 : (V,E1 − e1 + e2) is a spanning tree.

For n ≥ 4, there exist two edge-disjoint spanning trees.
So the diameter of the exchange graph equals n− 1.

abstract spanning tree = connected graph on n
vertices that does not contain cycles.



Spanning Trees — Elementary Operations

For |S| = n,

Ω(12.54n) ≤ max
|S|=n

|T (S)| ≤ O(141.07n).

[Huemer and de Mier, 2015; Hoffmann et al. 2013]

S = set of n points in general position in R2,
T (S) = set of plane spanning trees on S.

plane spanning tree = a straight-line spanning tree
on n points in the plane, no two edges cross.

• The matroid exchange may introduce crossings!
• We restrict exchanges to plane spanning trees.



Spanning Trees — Elementary Operations

Let T1 = (S,E1) and T2 = (S,E2) be two trees in T (S).
The operation that replaces T1 by T2 is
• an exchange if there are edges e1 and e2 such that

E1 \E2 = {e1} and E2 \E1 = {e2} (i.e., delete an edge
e1 from E1 and insert a new edge e2).

• A compatible exchange is an exchange such that the
graph (S,E1 ∪ E2) is a noncrossing straight-line graph
(i.e., e1 and e2 do not cross).

• A rotation is a compatible exchange such that e1 and
e2 have a common endpoint p = e1 ∩ e2.

• An empty-triangle rotation is a rotation such that the
edges of neither T1 nor T2 intersect the interior of the
triangle ∆(pqr) formed by the vertices of e1 and e2.

• An edge slide is an empty-triangle rotation such that
qr ∈ E1 ∩ E2.



Spanning Trees — Elementary Operations

Exchange Compatible
Exchange

Rotation Empty-Triangle
Rotation

Edge Slide



Spanning Trees — Elementary Operations

Operation Single Operation Single Operation
Upper Bound Lower Bound

Exchange 2n− 4 b 3n2 c − 5 [HHM+99]
Compatible Ex. 2n− 4 b 3n2 c − 5
Rotation 2n− 4 [AF96] b 3n2 c − 4
Empty-Tri. Rot. O(n log n) b 3n2 c − 4
Edge Slide O(n2) [AR07] Ω(n2) [AR07]

All five operations define connected transition graphs for
every point set in general position.

Current upper and lower bounds for the diameter



Spanning Trees — Simultaneous Operations
Upper and lower bounds for the diameter

under simultaneous operations.

Convex Position

Empty-Tri. Rot. 4 3
Edge Slide O(log n) Ω(log n)

Operation Simultaneous Simultaneous
Upper Bound Lower Bound

Exchange 1 1

Compatible Ex. O(log n) [AAH02] Ω( logn
log logn ) [BRU+09]

Rotation O(log n) Ω( logn
log logn )

Empty-Tri. Rot. 8n Ω(log n)
Edge Slide O(n2) [AR07] Ω(n)



Spanning Trees — Exchange Operation

Lower bound construction:
It takes b 3n2 c − 5 exchanges to
transform T1 to T2.
[Hernando, Hurtado, Márquez,
Mora, and Noy, 1999]
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Lower bound construction:
It takes b 3n2 c − 5 exchanges to
transform T1 to T2.
[Hernando, Hurtado, Márquez,
Mora, and Noy, 1999]

The same consturction gives a
lower bound of b 3n2 c − 4 for
rotation operations.
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n− 2 exchanges can transform
any plane graph into a star
centered at the convex hull.
⇒ Diameter ≤ 2n− 4
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Spanning Trees — Exchange Operation

n− 2 exchanges can transform
any plane graph into a star
centered at the convex hull.
⇒ Diameter ≤ 2n− 4
[Avis & Fukuda, 1996]

Let v be a vertex on the convex hull.
While T is not a star centered at v,
• v sees an entire edge ab.
• Rotate ab to av or bv.

a

b

v

For n ≥ 3 points in convex
position: diameter ≤ 23n

12 − 5.
[Lonner & T., 2018]



Spanning Trees — Empty-Triangle Rotation

Let ` be a halving line.
Triangulate T .
For every triangle ∆ along `
(in stabbing order),

• If the first edge of ∆
crossed by ` is in T ,
then replace it with
another edge of ∆.

At most 3n empty-triangle
rotations can remove all but one
edges between the two halves.
f(n) ≤ 3n + 2f(n/2)
⇒ Diameter is O(n log n)
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Simultaneous Empty-Triangle Rotation

Let ` be a halving line.
Triangulate T .
For every triangle ∆ along T
(in stabbing order),

• If the first edge of ∆
crossed by ` is in T ,
then replace it with
another edge of ∆.

At most 3n empty triangle
rotations can remove all but one
edges between the two halves.
f(n) ≤ 3n + f(n/2)
⇒ Diameter is O(n)

`
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Ω(log n) simultaneous empty-triangle rotations are
sometimes necessary:
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Spanning Trees — Simultaneous Rotations

O(log n) simultaneous rotations
can transform any plane graph
into a star centered at the
convex hull.
⇒ Diameter is O(log n)

p p p p

• Let p be an extreme point.
• Assume p = (0,−∞)

by a projective trafo.
• While T is not a star

centered at p,
Apply starify(p)

starify(p) maintains
a plane spanning tree.
The sum of “discretre”
horizontal extents all
edges decreases by a
factor of 1

2 .
⇒ Algo. terminates
after O(log n) moves.
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Each iteration of starify(p)
can be implemented in at most
4 simultaneous rotations.
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Spanning Trees — Simultaneous Operations
Upper and lower bounds for the diameter

under simultaneous operations.

Convex Position

Empty-Tri. Rot. 4 3
Edge Slide O(log n) Ω(log n)
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Edge Slide O(n2) [AR07] Ω(n)



Reconstuct Crossings from Plane Spanning Trees

Keller & Perles [2016]: Given the exchange graph on T (S),
for some point set S, one can compute the intersection graph
of the edges of K(S). In other words, the exchange graph
determines which pairs of edges of K(S) cross.

S = set of n points in general position in R2,
T (S) = set of plane spanning trees on S.
K(S) = complete geometric graph on S.



Reconstuct Crossings from Plane Spanning Trees

Keller & Perles [2016]: Given the exchange graph on T (S),
for some point set S, one can compute the intersection graph
of the edges of K(S). In other words, the exchange graph
determines which pairs of edges of K(S) cross.

S = set of n points in general position in R2,
T (S) = set of plane spanning trees on S.
K(S) = complete geometric graph on S.

Oropeza & T. [2018]: Given the compatible exchange graph
on T (S), for some point set S, one can compute the
intersection graph of the edges of K(S).
In other words, the compatoble exchange graph determines
which pairs of edges of K(S) cross.



Open Problems

Improve the diameter bounds for the “tree graphs.”
• Are b 32nc exchange operations enough to transform a

plane spanning tree to any other plane spanning tree?
• Is the diameter for empty-triangle rotation O(n)?
• Is the diameter for simultanous edge slides Θ(n), or

Θ(n2), or something in between?

Transformation graphs for other variants:
• Is the space of plane spanning trees of max degee≤ k

connected under any or all of the five operations?
• If the edges have unique labels, can these operations

“shuffle” the labels arbitrarily?



Open Problems

Reconstruction of intersection pattens from “tree graphs.”
• Does the transition graph of rotations contain enough

informartion to reconstruct the intersection graph of the
edges of K(S)?

• For finding a possible counterexample, we need to
generate finite point sets S1, S2 ⊂ R2 such that
|S1| = |S2|, |T (S1)| = |T (S2)|, and the intersection
patterns of K(S1) and K(S2) are different.



Thank you for your attention!


