Exchange operations on noncrossing spanning trees

Csaba D. Tóth Cal State Northridge, Los Angeles, CA and Tufts University, Medford, MA

abstract spanning tree = connected graph on n vertices that does not contain cycles.

There are n^{n-2} spanning trees on n labeled vertices [Cayley, 1889]

Exchange property for graphic maroids: If $T_1 = (V, E_1)$ and $T_2 = (V, E_2)$ are spanning trees, $\forall e_1 \in E_1 \ \exists e_2 \in E_2 : (V, E_1 - e_1 + e_2)$ is a spanning tree.

For $n \ge 4$, there exist two edge-disjoint spanning trees. So the diameter of the *exchange graph* equals n - 1.

plane spanning tree = a straight-line spanning tree on n points in the plane, no two edges cross.

 $S = \text{set of } n \text{ points in general position in } \mathbb{R}^2$, $\mathcal{T}(S) = \text{set of plane spanning trees on } S$. For |S| = n,

$$\Omega(12.54^n) \le \max_{|S|=n} |\mathcal{T}(S)| \le O(141.07^n).$$

[Huemer and de Mier, 2015; Hoffmann et al. 2013]

- The matroid exchange may introduce crossings!
- We restrict exchanges to plane spanning trees.

Let $T_1 = (S, E_1)$ and $T_2 = (S, E_2)$ be two trees in $\mathcal{T}(S)$. The operation that replaces T_1 by T_2 is

- an exchange if there are edges e₁ and e₂ such that
 E₁ \ E₂ = {e₁} and E₂ \ E₁ = {e₂} (i.e., delete an edge
 e₁ from E₁ and insert a new edge e₂).
- A compatible exchange is an exchange such that the graph (S, E₁ ∪ E₂) is a noncrossing straight-line graph (i.e., e₁ and e₂ do not cross).
- A rotation is a compatible exchange such that e₁ and
 e₂ have a common endpoint p = e₁ ∩ e₂.
- An empty-triangle rotation is a rotation such that the edges of neither T_1 nor T_2 intersect the interior of the triangle $\Delta(pqr)$ formed by the vertices of e_1 and e_2 .
- An edge slide is an empty-triangle rotation such that $qr \in E_1 \cap E_2$.

All five operations define *connected* transition graphs for every point set in general position.

Operation	Single Operation	Single Operation
	Upper Bound	Lower Bound
Exchange	2n - 4	$\lfloor \frac{3n}{2} floor - 5$ [HHM+99]
Compatible Ex.	2n - 4	$\left\lfloor \frac{3n}{2} \right\rfloor - 5$
Rotation	2n - 4 [AF96]	$\left\lfloor \frac{3n}{2} \right\rfloor - 4$
Empty-Tri. Rot.	$O(n \log n)$	$\left\lfloor \frac{3n}{2} \right\rfloor - 4$
Edge Slide	$O(n^2)$ [AR07]	$\Omega(n^2)$ [AR07]

Current upper and lower bounds for the diameter

Spanning Trees — Simultaneous Operations Upper and lower bounds for the diameter under *simultaneous* operations.

Operation	Simultaneous	Simultaneous
	Upper Bound	Lower Bound
Exchange	1	1
Compatible Ex.	$O(\log n)$ [AAH02]	$\Omega(\frac{\log n}{\log \log n})$ [BRU+09]
Rotation	$O(\log n)$	$\Omega(\frac{\log n}{\log \log n})$
Empty-Tri. Rot.	8n	$\Omega(\log n)$
Edge Slide	$O(n^2)$ [AR07]	$\Omega(n)$

Convex Position		
Empty-Tri. Rot.	4	3
Edge Slide	$O(\log n)$	$\Omega(\log n)$

Lower bound construction: It takes $\lfloor \frac{3n}{2} \rfloor - 5$ exchanges to transform T_1 to T_2 . [Hernando, Hurtado, Márquez, Mora, and Noy, 1999]

Lower bound construction: It takes $\lfloor \frac{3n}{2} \rfloor - 5$ exchanges to transform T_1 to T_2 . [Hernando, Hurtado, Márquez, Mora, and Noy, 1999]

The same consturction gives a lower bound of $\lfloor \frac{3n}{2} \rfloor - 4$ for rotation operations.

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

- v sees an entire edge ab.
- Rotate ab to av or bv.

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

- v sees an entire edge ab.
- Rotate ab to av or bv.

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

- v sees an entire edge ab.
- Rotate ab to av or bv.

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

- v sees an entire edge ab.
- Rotate ab to av or bv.

n-2 exchanges can transform any plane graph into a star centered at the convex hull. \Rightarrow Diameter $\leq 2n-4$ [Avis & Fukuda, 1996]

Let v be a vertex on the convex hull. While T is not a star centered at v,

- v sees an entire edge ab.
- Rotate ab to av or bv.

For $n \ge 3$ points in convex position: diameter $\le \frac{23n}{12} - 5$. [Lonner & T., 2018]

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty-triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + 2f(n/2)$ \Rightarrow Diameter is $O(n \log n)$

Let ℓ be a halving line. Triangulate T. For every triangle Δ along ℓ (in stabbing order),

At most 3n empty triangle rotations can remove all but one edges between the two halves. $f(n) \leq 3n + f(n/2)$ \Rightarrow Diameter is O(n)

Let ℓ be a halving line. Triangulate T. For every triangle Δ along T(in stabbing order),

 $\Omega(\log n)$ simultaneous empty-triangle rotations are sometimes necessary:

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

 $O(\log n)$ simultaneous rotations can transform any plane graph into a star centered at the convex hull.

 \Rightarrow Diameter is $O(\log n)$

- Let p be an extreme point.
- Assume $p = (0, -\infty)$ by a projective trafo.
- While T is not a star centered at p, Apply starify(p)

starify(p) maintains a plane spanning tree. The sum of "discretre" horizontal extents all edges decreases by a factor of $\frac{1}{2}$. \Rightarrow Algo. terminates after $O(\log n)$ moves.

All five operations define *connected* transition graphs for every point set in general position.

Operation	Single Operation	Single Operation
	Upper Bound	Lower Bound
Exchange	2n - 4	$\lfloor \frac{3n}{2} floor - 5$ [HHM+99]
Compatible Ex.	2n - 4	$\left\lfloor \frac{3n}{2} \right\rfloor - 5$
Rotation	2n - 4 [AF96]	$\left\lfloor \frac{3n}{2} \right\rfloor - 4$
Empty-Tri. Rot.	$O(n \log n)$	$\left\lfloor \frac{3n}{2} \right\rfloor - 4$
Edge Slide	$O(n^2)$ [AR07]	$\Omega(n^2)$ [AR07]

Current upper and lower bounds for the diameter

Spanning Trees — Simultaneous Operations Upper and lower bounds for the diameter under *simultaneous* operations.

Operation	Simultaneous	Simultaneous
	Upper Bound	Lower Bound
Exchange	1	1
Compatible Ex.	$O(\log n)$ [AAH02]	$\Omega(\frac{\log n}{\log \log n})$ [BRU+09]
Rotation	$O(\log n)$	$\Omega(\frac{\log n}{\log \log n})$
Empty-Tri. Rot.	8n	$\Omega(\log n)$
Edge Slide	$O(n^2)$ [AR07]	$\Omega(n)$

Convex Position		
Empty-Tri. Rot.	4	3
Edge Slide	$O(\log n)$	$\Omega(\log n)$

Reconstuct Crossings from Plane Spanning Trees

 $S = \text{set of } n \text{ points in general position in } \mathbb{R}^2$, $\mathcal{T}(S) = \text{set of plane spanning trees on } S$. K(S) = complete geometric graph on S.

Keller & Perles [2016]: Given the exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the *intersection graph* of the edges of K(S). In other words, the exchange graph determines which pairs of edges of K(S) cross. Reconstuct Crossings from Plane Spanning Trees

 $S = \text{set of } n \text{ points in general position in } \mathbb{R}^2$, $\mathcal{T}(S) = \text{set of plane spanning trees on } S$. K(S) = complete geometric graph on S.

Keller & Perles [2016]: Given the exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the *intersection graph* of the edges of K(S). In other words, the exchange graph determines which pairs of edges of K(S) cross.

Oropeza & T. [2018]: Given the compatible exchange graph on $\mathcal{T}(S)$, for some point set S, one can compute the *intersection graph* of the edges of K(S). In other words, the compatible exchange graph determines which pairs of edges of K(S) cross.

Open Problems

Improve the diameter bounds for the "tree graphs."

- Are $\lfloor \frac{3}{2}n \rfloor$ exchange operations enough to transform a plane spanning tree to any other plane spanning tree?
- Is the diameter for **empty-triangle rotation** O(n)?
- Is the diameter for simultanous edge slides $\Theta(n),$ or $\Theta(n^2),$ or something in between?

Transformation graphs for other variants:

- Is the space of plane spanning trees of max degee ≤ k connected under any or all of the five operations?
- If the edges have unique labels, can these operations "shuffle" the labels arbitrarily?

Open Problems

Reconstruction of intersection pattens from "tree graphs."

- Does the transition graph of **rotations** contain enough informartion to reconstruct the intersection graph of the edges of K(S)?
- For finding a possible counterexample, we need to generate finite point sets $S_1, S_2 \subset \mathbb{R}^2$ such that $|S_1| = |S_2|, |\mathcal{T}(S_1)| = |\mathcal{T}(S_2)|$, and the intersection patterns of $K(S_1)$ and $K(S_2)$ are different.

Thank you for your attention!