Conflict-Free coloring of string graphs

Shakhar Smorodinsky Joint work with Chaya Keller and Alexandre Rok

Ben-Gurion University of the Negev

June 2018

classic Non-Monochromatic (proper) coloring for Hypergraphs

Definition (proper coloring)

Given a hypergraph $H = (V, \mathcal{E})$, a-coloring $c : V \to \{1, \dots, r\}$. is called proper if $\forall e \in \mathcal{E}, |e| \ge 2, \exists v, v' \in e \text{ s.t. } c(v) \neq c(v')$. $\chi(H)$ denotes the chromatic number of H.

Definition (CF-coloring)

Given a hypergraph $H = (V, \mathcal{E})$, a-coloring $c : V \to \{1, ..., r\}$ *CF-coloring if* $\forall e \in \mathcal{E} \exists v \in e \text{ s.t. } c(v) \neq c(v') \forall v' \in e \setminus \{v\}$. $\chi_{CF}(H)$ denotes the *CF-chromatic number* of *H*.

A CF-coloring of a hypergraph with 2 colors.

Definition (CF-coloring)

Given a hypergraph $H = (V, \mathcal{E})$, a-coloring $c : V \to \{1, ..., r\}$ *CF-coloring if* $\forall e \in \mathcal{E} \exists v \in e \text{ s.t. } c(v) \neq c(v') \forall v' \in e \setminus \{v\}$. $\chi_{CF}(H)$ denotes the *CF-chromatic number* of H.

A CF-coloring of a hypergraph with 2 colors.

Theorem (Pach and Tardos, '09)

 $\forall H \text{ with } m \text{ hyperedges } \chi_{CF}(H) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}} = O(m^{\frac{1}{2}}) \text{ and this is tight.}$

- **→** → **→**

Theorem (Pach and Tardos, '09)

 $\forall H \text{ with } m \text{ hyperedges } \chi_{CF}(H) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}} = O(m^{\frac{1}{2}}) \text{ and this is tight.}$

Theorem (S '07)

Let H = (V, E) be a hypergraph on *n* vert. t > 1 a fixed integer. If $\chi(H') \le t \forall H' \subset H$. Then

$\chi_{CF}(H) = O(t \log n).$ Asymptotically tight for constant t.

Theorem (Keller, Rok, 5. '18+)

Any hypergraph with *n* vertices and *m* hyperedges $\chi_{k-CF}(H) = O(m^{\frac{1}{k+1}} \log^{\frac{k}{k+1}} n)$ and its near optimal.

- **→** → **→**

Theorem (Keller, Rok, 5. '18+)

Any hypergraph with *n* vertices and *m* hyperedges $\chi_{k-CF}(H) = O(m^{\frac{1}{k+1}} \log^{\frac{k}{k+1}} n)$ and its near optimal.

Observation (for the lower bound)

The complete k + 1-uniform hypergraph on n vert has $m = \binom{n}{k+1}$ hyperedges. Needs at least $\frac{n}{k} = \Omega(m^{\frac{1}{k+1}})$ colors in any k - CF-coloring.

Neighborhood hypergraph of a graph

Definition

Given a graph G = (V, E) the open (resp. closed) neighborhood hypergraph of G is the hypergraph $H = (V, \mathcal{E})$, where $\mathcal{E} = \{N(v) : v \in V\}$ (resp. $\mathcal{E} = \{N(v) \cup \{v\} : v \in V\}$).

Drawing of a graph and its open neighborhood hypergraph.

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of *G* is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph. Let $\chi_{k-CF}^{on}(G)$ (resp. $\chi_{k-CF}^{cn}(G)$) denote the corresponding k - CF chromatic numbers.

When k = 1 simply write $\chi_{CF}^{on}(G)$ (resp. $\chi_{CF}^{cn}(G)$).

伺 と く ヨ と く ヨ と

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of G is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph. Let $\chi_{k-CF}^{on}(G)$ (resp. $\chi_{k-CF}^{cn}(G)$) denote the corresponding k - CF chromatic numbers. When k = 1 simply write $\chi_{CF}^{on}(G)$ (resp. $\chi_{CF}^{cn}(G)$).

Theorem (open neighborhoods Cheilaris, '09)

 $\forall G \text{ on } n \text{ vertices } \chi_{CF}^{on}(G) = O(\sqrt{n}) \text{ and this is tight.}$

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of G is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph. Let $\chi_{k-CF}^{on}(G)$ (resp. $\chi_{k-CF}^{cn}(G)$) denote the corresponding k - CF chromatic numbers. When k = 1 simply write $\chi_{CF}^{on}(G)$ (resp. $\chi_{CF}^{cn}(G)$).

Theorem (open neighborhoods Cheilaris, '09)

 $\forall G \text{ on } n \text{ vertices } \chi^{on}_{CF}(G) = O(\sqrt{n}) \text{ and this is tight.}$

Later extended:

Theorem (Pach and Tardos, '09) $\forall H \text{ with } m \text{ hyperedges } \chi_{CF}(H) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}} \text{ and this is tight.}$

closed CF-coloring of graphs

Observation

 $\forall G \text{ we have } \chi_{CF}^{cn}(G) \leq \chi(G).$

- **→** → **→**

< ∃ →

æ

Observation

 $\forall G \text{ we have } \chi^{cn}_{CF}(G) \leq \chi(G).$

Theorem (Pach and Tardos, '09)

 \forall graph G on n vertices $\chi^{cn}_{CF}(G) \leq 2\chi^{on}_{CF}(G)$ Moreover,

 $\chi_{CF}^{cn}(G) = O(\log^2 n).$

◆ 同 ♪ ◆ 三 ♪

Observation

 $\forall G \text{ we have } \chi_{CF}^{cn}(G) \leq \chi(G).$

Theorem (Pach and Tardos, '09)

 \forall graph G on n vertices $\chi_{CF}^{cn}(G) \leq 2\chi_{CF}^{on}(G)$ Moreover,

 $\chi_{CF}^{cn}(G) = O(\log^2 n).$

Theorem (Glebov, Szabó, Tardos '14)

 $\exists G \text{ on } n \text{ vertices with } \chi_{CF}^{cn}(G) = \Omega(\log^2 n).$

□→ < □→</p>

Theorem (closed coloring Abel et al. '17)

(i) For a planar G χ^{cn}_{CF}(G) ≤ 3. Bound is tight!
(ii) If G does not contain a K_{r+1} as a minor then χ^{cn}_{CF}(G) ≤ r.

Theorem (closed coloring Abel et al. '17)

(i) For a planar G χ^{cn}_{CF}(G) ≤ 3. Bound is tight!
(ii) If G does not contain a K_{r+1} as a minor then χ^{cn}_{CF}(G) ≤ r.

Theorem (closed coloring Fekete, Keldenich '17)

Let G be an intersection graph of unit disks. Then $\chi_{CF}^{cn}(G) \leq 6$

Theorem (closed coloring Abel et al. '17)

(i) For a planar G χ^{cn}_{CF}(G) ≤ 3. Bound is tight!
(ii) If G does not contain a K_{r+1} as a minor then χ^{cn}_{CF}(G) ≤ r.

Theorem (closed coloring Fekete, Keldenich '17)

Let G be an intersection graph of unit disks. Then $\chi_{CF}^{cn}(G) \leq 6$

Theorem (open coloring Keller, 5 '17)

Let G be an intersection graph of n pseudo-disks. Then $\chi_{CF}^{on}(G) = O(\log n)$. Asymptotically tight.

A beautiful follow-up result by Keszegh 13-june-2018 10:00. Be there or be (a psudo-disk ?)

Definition

A string graph is a graph s.t. vertices are curves and \exists an edge between 2 curves iff they intersect.

A family of 4 curves and its intersection graph.

Theorem (Keller, Rok, S., '18+)

Any hypergraph with *n* vertices and *m* hyperedges can be k-CF-colored with $O(m^{\frac{1}{k+1}} \log^{\frac{k}{k+1}} n)$ colors.

- **→** → **→**

String graphs

Theorem (Keller, Rok, 5., '18+)

Any hypergraph with *n* vertices and *m* hyperedges can be k-CF-colored with $O(m^{\frac{1}{k+1}}\log^{\frac{k}{k+1}}n)$ colors.

Corollary (open coloring Keller, Rok, S '18+)

If $F^k(n)$ denotes the maximum open k-CF chrom. numb. of a string graph on n v. then $\Omega(n^{\frac{1}{k+1}}) = F^k(n) = O(n^{\frac{1}{k+1}} \log^{\frac{k}{k+1}} n)$.

String graphs

Theorem (Keller, Rok, 5., '18+)

Any hypergraph with *n* vertices and *m* hyperedges can be k-CF-colored with $O(m^{\frac{1}{k+1}}\log^{\frac{k}{k+1}}n)$ colors.

Corollary (open coloring Keller, Rok, S. '18+)

If $F^k(n)$ denotes the maximum open k-CF chrom. numb. of a string graph on n v. then $\Omega(n^{\frac{1}{k+1}}) = F^k(n) = O(n^{\frac{1}{k+1}} \log^{\frac{k}{k+1}} n)$.

Example with CF-coloring, i.e., k = 1: There are *i* blue segments and $\binom{i}{2}$ red segments. $n = i + \binom{i}{2}$. At least *i* colors are needed for open CF-coloring.

So what interesting can be said?

So what interesting can be said?

Theorem (open coloring Keller, Rok, S. '18+)

 \forall string graph G on n vert. if $\chi(G) \leq t$ then $\chi^{on}_{CF}(G) = O(t^2 \log n)$. Asymptotcially tight for any constant $t \geq 2$.

Special string graphs:open coloring *L*-shapes

There exists families of *n L*-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

Special string graphs:open coloring L-shapes

There exists families of *n L*-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

In any open CF-coloring each blue *L*-shape must have a distinct color.

Special string graphs:open coloring L-shapes

There exists families of *n L*-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

In any open CF-coloring each blue *L*-shape must have a distinct color.

Theorem (Keller, Rok, 5. '18+)

Families of n L-shapes have open 2-CF-chromatic number $O(\log n)$.

In fact, one can obtain k-CF-colorings for small k for many different families of n "simple" shapes with $O(\log n)$ colors.

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, S. '18+)

If I(n) denotes the maximum open *CF*-chromatic number of an interval overlap graphs on *n* vertices, then $\Omega(\log n) = I(n) = O(\log^2 n).$

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, **5**. '18+)

If I(n) denotes the maximum open *CF*-chromatic number of an interval overlap graphs on *n* vertices, then $\Omega(\log n) = I(n) = O(\log^2 n).$

Theorem (Keller, Rok, S. '18+)

If L(n) denotes the maximum open CF-chromatic number of a family of n grounded L-shapes, then $\Omega(\log n) = L(n) = O(\log^3 n)$.

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, **5**. '18+)

If I(n) denotes the maximum open *CF*-chromatic number of an interval overlap graphs on *n* vertices, then $\Omega(\log n) = I(n) = O(\log^2 n).$

Theorem (Keller, Rok, S. '18+)

If L(n) denotes the maximum open CF-chromatic number of a family of n grounded L-shapes, then $\Omega(\log n) = L(n) = O(\log^3 n)$.

Conjecture

Given a fixed curved c any family \mathcal{F} of n curves each intersecting c ≥ 1 and \leq a cnst numb. of times can be open CF-colored with polylog(n) colors.

Thank You!

э

(日)