Conflict-Free coloring of string graphs

Shakhar Smorodinsky
Joint work with Chaya Keller and Alexandre Rok

Ben-Gurion University of the Negev

June 2018

classic Non-Monochromatic (proper) coloring for Hypergraphs

Definition (proper coloring)

Given a hypergraph $H=(V, \mathcal{E})$, a-coloring $c: V \rightarrow\{1, \ldots, r\}$. is called proper if $\forall e \in \mathcal{E},|e| \geq 2, \exists v, v^{\prime} \in e$ s.t. $c(v) \neq c\left(v^{\prime}\right)$. $\chi(H)$ denotes the chromatic number of H.

Conflict-Free coloring for Hypergraphs

Definition (CF-coloring)

Given a hypergraph $H=(V, \mathcal{E})$, a-coloring $c: V \rightarrow\{1, \ldots, r\}$ $C F$-coloring if $\forall e \in \mathcal{E} \exists v \in e$ s.t. $c(v) \neq c\left(v^{\prime}\right) \forall v^{\prime} \in e \backslash\{v\}$. $\chi_{C F}(H)$ denotes the CF-chromatic number of H.

A CF-coloring of a hypergraph with 2 colors.

Conflict-Free coloring for Hypergraphs

Definition (CF-coloring)

Given a hypergraph $H=(V, \mathcal{E})$, a-coloring $c: V \rightarrow\{1, \ldots, r\}$ $C F$-coloring if $\forall e \in \mathcal{E} \exists v \in e$ s.t. $c(v) \neq c\left(v^{\prime}\right) \forall v^{\prime} \in e \backslash\{v\}$. $\chi_{C F}(H)$ denotes the CF-chromatic number of H.

A CF-coloring of a hypergraph with 2 colors.

Definition (k-CF cloring)

If in each hyperedge some color appears $1 \leq i \leq k$ then c is a k-CF coloring. Denote by $\chi_{k-C F}(H)$ the ..

Conflict-Free coloring for Hypergraphs

Theorem (Pach and Tardos, '09)

$\forall H$ with m hyperedges $\chi_{C F}(H) \leq \frac{1}{2}+\sqrt{2 m+\frac{1}{4}}=O\left(m^{\frac{1}{2}}\right)$ and this is tight.

Conflict-Free coloring for Hypergraphs

Theorem (Pach and Tardos, '09)

$\forall H$ with m hyperedges $\chi_{C F}(H) \leq \frac{1}{2}+\sqrt{2 m+\frac{1}{4}}=O\left(m^{\frac{1}{2}}\right)$ and this is tight.

Theorem (S '07)

Let $H=(V, E)$ be a hypergraph on n vert. $t>1$ a fixed integer. If $\chi\left(H^{\prime}\right) \leq t \forall H^{\prime} \subset H$.
Then

$$
\chi_{C F}(H)=O(t \log n) .
$$

Asymptotically tight for constant t.

k-CF-coloring for hypergraphs

Theorem (Keller, Rok, S. '18+)

Any hypergraph with n vertices and m hyperedges $\chi_{k-C F}(H)=O\left(m^{\frac{1}{k+1}} \log { }^{\frac{k}{k+1}} n\right)$ and its near optimal.

k-CF-coloring for hypergraphs

Theorem (Keller, Rok, S. '18+)

Any hypergraph with n vertices and m hyperedges $\chi_{k-C F}(H)=O\left(m^{\frac{1}{k+1}} \log { }^{\frac{k}{k+1}} n\right)$ and its near optimal.

Observation (for the lower bound)

The complete $k+1$-uniform hypergraph on n vert has $m=\binom{n}{k+1}$ hyperedges. Needs at least $\frac{n}{k}=\Omega\left(m^{\frac{1}{k+1}}\right)$ colors in any $k-C F$-coloring.

Neighborhood hypergraph of a graph

Definition

Given a graph $G=(V, E)$ the open (resp. closed) neighborhood hypergraph of G is the hypergraph $H=(V, \mathcal{E})$, where $\mathcal{E}=\{N(v): v \in V\}($ resp. $\mathcal{E}=\{N(v) \cup\{v\}: v \in V\})$.

Drawing of a graph and its open neighborhood hypergraph.

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of G is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph.
Let $\chi_{k-C F}^{o n}(G)\left(\right.$ resp. $\left.\chi_{k-C F}^{c n}(G)\right)$ denote the corresponding $k-C F$ chromatic numbers.
When $k=1$ simply write $\chi_{C F}^{o n}(G)\left(\right.$ resp. $\left.\chi_{C F}^{c n}(G)\right)$.

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of G is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph.
Let $\chi_{k-C F}^{o n}(G)\left(\right.$ resp. $\left.\chi_{k-C F}^{c n}(G)\right)$ denote the corresponding $k-C F$ chromatic numbers.
When $k=1$ simply write $\chi_{C F}^{o n}(G)\left(\right.$ resp. $\left.\chi_{C F}^{c n}(G)\right)$.

Theorem (open neighborhoods Cheilaris, '09)

$\forall G$ on n vertices $\chi_{C F}^{\circ n}(G)=O(\sqrt{n})$ and this is tight.

Open/closed CF-coloring of graphs

Definition

An open (resp. close) k-CF-coloring of G is a k-CF-coloring of its open (resp. closed) neighborhood hypergraph.
Let $\chi_{k-C F}^{o n}(G)$ (resp. $\left.\chi_{k-C F}^{c n}(G)\right)$ denote the corresponding $k-C F$ chromatic numbers.
When $k=1$ simply write $\chi_{C F}^{o n}(G)\left(\right.$ resp. $\left.\chi_{C F}^{c n}(G)\right)$.

Theorem (open neighborhoods Cheilaris, '09)

$\forall G$ on n vertices $\chi_{C F}^{\circ n}(G)=O(\sqrt{n})$ and this is tight.

Later extended:

Theorem (Pach and Tardos, '09)

$\forall H$ with m hyperedges $\chi_{C F}(H) \leq \frac{1}{2}+\sqrt{2 m+\frac{1}{4}}$ and this is tight.

closed CF-coloring of graphs

Observation
 $\forall G$ we have $\chi_{C F}^{c n}(G) \leq \chi(G)$.

closed CF-coloring of graphs

Observation

```
\forallG we have }\mp@subsup{\chi}{CF}{cn}(G)\leq\chi(G)
```


Theorem (Pach and Tardos, '09)

\forall graph G on n vertices $\chi_{C F}^{c n}(G) \leq 2 \chi_{C F}^{o n}(G)$
Moreover,

$$
\chi_{C F}^{c n}(G)=O\left(\log ^{2} n\right) .
$$

closed CF-coloring of graphs

Observation

```
\forallG we have }\mp@subsup{\chi}{CF}{cn}(G)\leq\chi(G)
```


Theorem (Pach and Tardos, '09)

\forall graph G on n vertices $\chi_{C F}^{c n}(G) \leq 2 \chi_{C F}^{o n}(G)$
Moreover,

$$
\chi_{C F}^{c n}(G)=O\left(\log ^{2} n\right) .
$$

Theorem (Glebov, Szabó, Tardos '14)
 $\exists G$ on n vertices with $\chi_{C F}^{c n}(G)=\Omega\left(\log ^{2} n\right)$.

Special graphs

Theorem (closed coloring Abel et al. '17)
(i) For a planar $G \chi_{C F}^{c n}(G) \leq 3$. Bound is tight! (ii) If G does not contain a K_{r+1} as a minor then $\chi_{C F}^{c n}(G) \leq r$.

Special graphs

Theorem (closed coloring Abel et al. '17)

(i) For a planar $G \chi_{C F}^{c n}(G) \leq 3$. Bound is tight!
(ii) If G does not contain a K_{r+1} as a minor then $\chi_{C F}^{c n}(G) \leq r$.

Theorem (closed coloring Fekete, Keldenich '17)
Let G be an intersection graph of unit disks. Then $\chi_{C F}^{c n}(G) \leq 6$

Special graphs

Theorem (closed coloring Abel et al. '17)

(i) For a planar $G \chi_{C F}^{c n}(G) \leq 3$. Bound is tight!
(ii) If G does not contain a K_{r+1} as a minor then $\chi_{C F}^{c n}(G) \leq r$.

Theorem (closed coloring Fekete, Keldenich '17)

Let G be an intersection graph of unit disks. Then $\chi_{C F}^{c n}(G) \leq 6$

Theorem (open coloring Keller, S '17)

Let G be an intersection graph of n pseudo-disks. Then $\chi_{C F}^{\circ n}(G)=O(\log n)$. Asymptotically tight.

A beautiful follow-up result by Keszegh 13-june-2018 10:00. Be there or be (a psudo-disk ?)

String graphs

Definition

A string graph is a graph s.t. vertices are curves and \exists an edge between 2 curves iff they intersect.

A family of 4 curves and its intersection graph.

String graphs

Theorem (Keller, Rok, S. , '18+)
Any hypergraph with n vertices and m hyperedges can be k-CF-colored with $O\left(m^{\frac{1}{k+1}} \log { }^{\frac{k}{k+1}} n\right)$ colors.

String graphs

Theorem (Keller, Rok, S. , '18+)

Any hypergraph with n vertices and m hyperedges can be k-CF-colored with $O\left(m^{\frac{1}{k+1}} \log { }^{\frac{k}{k+1}} n\right)$ colors.

Corollary (open coloring Keller, Rok, S. '18+)

If $F^{k}(n)$ denotes the maximum open k-CF chrom. numb. of a string graph on $n v$. then $\Omega\left(n^{\frac{1}{k+1}}\right)=F^{k}(n)=O\left(n^{\frac{1}{k+1}} \log { }^{\frac{k}{k+1}} n\right)$.

String graphs

Theorem (Keller, Rok, S. , '18+)

Any hypergraph with n vertices and m hyperedges can be k-CF-colored with $O\left(m^{\frac{1}{k+1}} \log g^{\frac{k}{k+1}} n\right)$ colors.

Corollary (open coloring Keller, Rok, S. '18+)

If $F^{k}(n)$ denotes the maximum open k-CF chrom. numb. of a string graph on $n v$. then $\Omega\left(n^{\frac{1}{k+1}}\right)=F^{k}(n)=O\left(n^{\frac{1}{k+1}} \log g^{\frac{k}{k+1}} n\right)$.

Example with CF-coloring, i.e., $k=1$: There are i blue segments and ($\left.\begin{array}{l}i \\ 2\end{array}\right)$ red segments. $n=i+\binom{i}{2}$. At least i colors are needed for open CF-coloring.

open coloring String graphs

So what interesting can be said?

open coloring String graphs

So what interesting can be said?
Theorem (open coloring Keller, Rok, S. '18+)
\forall string graph G on n vert. if $\chi(G) \leq t$ then
$\chi_{C F}^{\text {on }}(G)=O\left(t^{2} \log n\right)$.
Asymptotcially tight for any constant $t \geq 2$.

Special string graphs:open coloring L-shapes

There exists families of $n L$-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

Special string graphs:open coloring L-shapes

There exists families of $n L$-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

In any open CF-coloring each blue L-shape must have a distinct color.

Special string graphs:open coloring L-shapes

There exists families of $n L$-shapes with open CF-chromatic number $\Omega(\sqrt{n})$.

In any open CF-coloring each blue L-shape must have a distinct color.

Theorem (Keller, Rok, S. '18+)

Families of n L-shapes have open 2-CF-chromatic number $O(\log n)$.

In fact, one can obtain k-CF-colorings for small k for many different families of n "simple" shapes with $O(\log n)$ colors.

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, S. '18+)
If I(n) denotes the maximum open CF-chromatic number of an interval overlap graphs on n vertices, then
$\Omega(\log n)=I(n)=O\left(\log ^{2} n\right)$.

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, S. '18+)

If I(n) denotes the maximum open CF-chromatic number of an interval overlap graphs on n vertices, then $\Omega(\log n)=I(n)=O\left(\log ^{2} n\right)$.

Theorem (Keller, Rok, S. '18+)

If $L(n)$ denotes the maximum open CF-chromatic number of a family of n grounded L-shapes, then $\Omega(\log n)=L(n)=O\left(\log ^{3} n\right)$.

Special string graphs: open coloring intervals overlap graphs

Theorem (Keller, Rok, S. '18+)

If I(n) denotes the maximum open CF-chromatic number of an interval overlap graphs on n vertices, then $\Omega(\log n)=I(n)=O\left(\log ^{2} n\right)$.

Theorem (Keller, Rok, S. '18+)

If $L(n)$ denotes the maximum open CF-chromatic number of a family of n grounded L-shapes, then $\Omega(\log n)=L(n)=O\left(\log ^{3} n\right)$.

Conjecture

Given a fixed curved c any family \mathcal{F} of n curves each intersecting c ≥ 1 and \leq a cnst numb. of times can be open CF-colored with polylog(n) colors.

Thart You!

