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G = (V,E) is a simple graph. The set of vertices V is finite
and the set of edges E ⊆

(
V
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)
. We treat G as a 1-dimensional

simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic
and “nice” continuous map D : G→ S. By “generic” we mean
that the set of its self-intersections is finite and consisting only
of transversal edge intersections, i.e., proper edge crossings.

Injective D is an embedding.
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Let D be a drawing of a graph G.

Let ID(G) = {{e, f} ∈
(
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)
| e ∩ f = ∅ & |D(e) ∩D(f)| =2 1}.

A drawing for which ID(G) = ∅ is a Z2-embedding.

Let I◦D(G) = {{e, f} ∈
(
E
2

)
| |D(e) ∩D(f)| =2 1}.

A drawing for which I◦D(G) = ∅ is a strong Z2-embedding.

Theorem 1 (Hanani–Tutte, 1934–1970). If G admits a
Z2-embedding in the plane then G is planar.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer,
Schaefer, and Štefankovič 2009). If a graph G admits a strong
Z2-embedding on S then G can be embedded on S.
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For v ∈ e, f, g ∈ E, oD(e, f, g) = +1 and oD(e, f, g) = −1 if
e, f and g appear ccw and cw, resp., in the rotation at v.

σD(e, f, g) = oD(e, f, g) · (−1)cr({e,f,g}), where
cr({e, f, g}) = |D(e) ∩D(f)|+ |D(e) ∩D(g)|+ |D(f) ∩D(g)|

Claim 1. |{{e1, e2, e3} ⊂ {e, f, g, h} : σD(e1, e2, e3) = oD(e1, e2, e3)}| =2 0

We count the number of 3 element subsets of {e, f, g, h 3 v}
for which σD and oD return the same value.

Proof. We count the number of 3 element subsets for which
cr({e1, e2, e3}) =2 0. Thus, we count the number of triples of
vertices in a graph with 4 vertices inducing an even number of
edges. This number must be even.
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♣D(v) := {{e, f, g} : v ∈ e, f, g and σD(e, f, g) = oD(e, f, g)}

Claim 2. Let D be a Z2-embedding. If ♣D(v) =
(
δ(v)
3

)
, for all

v ∈ V , then D can be made strong while keeping the rotation
at every vertex.

Proof. Let Gaux(v) = (δ(v), E′), where ef ∈ E′, if
|D(e) ∩D(f)| =2 1. Gaux(v) must be a complete bipartite
graph. Pushing every edge in one part over v renders Gaux(v)
empty.
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Proof. Obviously, {e, f, g} ∈ ♣D(v) iff it appears as an element of exactly

one summand of ∆. Let {e′, f, g}, e′ 6= e. Then by Claim 1. applied to

{e, e′, f, g}, {e′, f, g} ∈ ♣D(v) iff it appears once or three times.

Claim 2. Let D be a Z2-embedding. If ♣D(v) =
(
δ(v)
3
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, for all

v ∈ V , then D can be made strong while keeping the rotation
at every vertex.
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Z2-rotation Tournaments

Let v ∈ e ∈ E. The Z2-rotation tournament is the

tournament TD(v, e) on {f ∈ E : v ∈ f} \ {e} s.t.
−→
fg if

σD(e, f, g) = +1.

Claim 3. For every pair e, f ∈ v ∈ E, TD(v, e) is acyclic if and
only if TD(v, f) is acyclic.

A drawing D of a graph G is Z2-acyclic if TD(v, e) is acyclic
for all v ∈ e ∈ E.

Corollary 2. If G admits a Z2-acyclic Z2-embedding D on a
surface S then G admits a strong Z2-embedding on S.
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Making Z2-acyclic Z2-embeddings Strong

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer,
Schaefer, and Štefankovič 2009). If a graph G admits a strong
Z2-embedding on S then G can be embedded on S.

Corollary 3. If G admits a Z2-acyclic Z2-embedding D on S
then G can be embedded on S.

Claim 4. Every planar Z2-embedding of a 3-connected graph
G is Z2-acyclic.

Corollary 4. If the restrictions of a drawing D of G to all
4-stars of G are Z2-acyclic then D is Z2-acyclic.
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Proof. M +MT = In−1 + Jn−1, and thus,
rank(MT ) + rank(M) ≥ rank(In−1 + Jn−1) = n− 2.
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Corollary 7. If K3,n admits a Z2-embedding on a surface S then K3,n

embeds on S.

Proof. M +MT = In−1 + Jn−1, and thus,
rank(MT ) + rank(M) ≥ rank(In−1 + Jn−1) = n− 2.
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result of Thomassen showing NP-hardness for computing the
orientable genus of cubic graphs.)



Unsolved problems

Can we decide in a polynomial time if a given graph Z2-embeds
on a given surface?

Computing the orientable Z2-genus is NP-hard. (Follows by the
result of Thomassen showing NP-hardness for computing the
orientable genus of cubic graphs.)

Does eg(G) = eg0(G) where eg(G) and eg0(G) is the Euler
genus and Euler Z2-genus, respectively?(Conjecture by Schaefer
and Štefankovič)


