\mathbb{Z}_2 -embeddings and Tournaments

Radoslav Fulek, Jan Kynčl

$\mathbb{Z}_2\text{-embeddings}$ and Tournaments

Radoslav Fulek, Jan Kynčl

Institute of Science and Technology

June 12, 2018

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \to S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., **proper edge crossings**.

Formally, D(e) is injective for every edge, $C = \{\mathbf{p} \in S : |D^{-1}[\mathbf{p}]| > 1\}$ is finite, and every $\mathbf{p} \in C$ is a proper edge crossing of exactly **two edges**.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

G = (V, E) is a **simple graph**. The set of vertices V is finite and the set of edges $E \subseteq {V \choose 2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \to S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., **proper edge crossings**.

Injective D is an **embedding**.

$\mathbb{Z}_2\text{-embeddings}$

Let D be a drawing of a graph G.

Let D be a drawing of a graph G.

Let $I_{D(G)} = \{\{e, f\} \in {E \choose 2} | e \cap f = \emptyset \& | D(e) \cap D(f) | =_2 1\}.$ A drawing for which $I_{D(G)} = \emptyset$ is a \mathbb{Z}_2 -embedding.

Let D be a drawing of a graph G.

Let $I_{D(G)} = \{\{e, f\} \in {E \choose 2} | e \cap f = \emptyset \& | D(e) \cap D(f) | =_2 1\}.$

A drawing for which $I_{D(G)} = \emptyset$ is a \mathbb{Z}_2 -embedding.

Theorem 1 (Hanani–Tutte, 1934–1970). If G admits a \mathbb{Z}_2 -embedding in the plane then G is planar.

Let D be a drawing of a graph G.

Let $I_{D(G)} = \{\{e, f\} \in {E \choose 2} | e \cap f = \emptyset \& | D(e) \cap D(f) | =_2 1\}.$ A drawing for which $I_{D(G)} = \emptyset$ is a \mathbb{Z}_2 -embedding.

Theorem 1 (Hanani–Tutte, 1934–1970). If G admits a \mathbb{Z}_2 -embedding in the plane then G is planar.

Let $I_{D(G)}^{\circ} = \{\{e, f\} \in {E \choose 2} | |D(e) \cap D(f)| =_2 1\}.$

A drawing for which $I_{D(G)}^{\circ} = \emptyset$ is a **strong** \mathbb{Z}_2 -embedding.

Let D be a drawing of a graph G.

Let $I_{D(G)} = \{\{e, f\} \in {E \choose 2} | e \cap f = \emptyset \& | D(e) \cap D(f) | =_2 1\}.$ A drawing for which $I_{D(G)} = \emptyset$ is a \mathbb{Z}_2 -embedding.

Theorem 1 (Hanani–Tutte, 1934–1970). If G admits a \mathbb{Z}_2 -embedding in the plane then G is planar.

Let $I_{D(G)}^{\circ} = \{\{e, f\} \in {E \choose 2} | |D(e) \cap D(f)| =_2 1\}.$

A drawing for which $I_{D(G)}^{\circ} = \emptyset$ is a **strong** \mathbb{Z}_2 -embedding.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_2 -embedding on S then G can be embedded on S.

```
\mathbb{Z}_2-rotation Order Type
```

Let D be a drawing of G = (V, E) on a surface S.

Let D be a drawing of G = (V, E) on a surface S. For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v.

Let D be a drawing of G = (V, E) on a surface S. For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v.

 $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}, \text{ where}$ $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

Let D be a drawing of G = (V, E) on a surface S. For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v.

 $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}, \text{ where}$ $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

 $\sigma_D(e, f, g)$ does not change after a flip

For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v. $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v. $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_D and o_D return the same value.

For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v. $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_D and o_D return the same value.

Claim 1. $|\{\{e_1, e_2, e_3\} \subset \{e, f, g, h\} : \sigma_D(e_1, e_2, e_3) = o_D(e_1, e_2, e_3)\}| =_2 0$

For $v \in e, f, g \in E$, $o_D(e, f, g) = +1$ and $o_D(e, f, g) = -1$ if e, f and g appear ccw and cw, resp., in the rotation at v. $\sigma_D(e, f, g) = o_D(e, f, g) \cdot (-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\}) = |D(e) \cap D(f)| + |D(e) \cap D(g)| + |D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_D and o_D return the same value.

Claim 1. $|\{\{e_1, e_2, e_3\} \subset \{e, f, g, h\} : \sigma_D(e_1, e_2, e_3) = o_D(e_1, e_2, e_3)\}| =_2 0$

Proof. We count the number of 3 element subsets for which $cr(\{e_1, e_2, e_3\}) =_2 0$. Thus, we count the number of triples of vertices in a graph with 4 vertices inducing an even number of edges. This number must be even.

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

Claim 2. Let *D* be a \mathbb{Z}_2 -embedding. If $\clubsuit_D(v) = \binom{\delta(v)}{3}$, for all $v \in V$, then *D* can be made strong while keeping the rotation at every vertex.

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

Claim 2. Let *D* be a \mathbb{Z}_2 -embedding. If $\clubsuit_D(v) = \binom{\delta(v)}{3}$, for all $v \in V$, then *D* can be made strong while keeping the rotation at every vertex.

Proof. Let $G_{aux}(v) = (\delta(v), E')$, where $ef \in E'$, if $|D(e) \cap D(f)| =_2 1$. $G_{aux}(v)$ must be a complete bipartite graph. Pushing every edge in one part over v renders $G_{aux}(v)$ empty.

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

Claim 2. Let *D* be a \mathbb{Z}_2 -embedding. If $\clubsuit_D(v) = \binom{\delta(v)}{3}$, for all $v \in V$, then *D* can be made strong while keeping the rotation at every vertex.

Claim 1. $|\{\{e_1, e_2, e_3\} \subset \{e, f, g, h\} : \sigma_D(e_1, e_2, e_3) = o_D(e_1, e_2, e_3)\}| =_2 0$

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

Claim 2. Let *D* be a \mathbb{Z}_2 -embedding. If $\clubsuit_D(v) = \binom{\delta(v)}{3}$, for all $v \in V$, then *D* can be made strong while keeping the rotation at every vertex.

Claim 1. $|\{\{e_1, e_2, e_3\} \subset \{e, f, g, h\} : \sigma_D(e_1, e_2, e_3) = o_D(e_1, e_2, e_3)\}| =_2 0$

Corollary 1. Let $\mathbf{e} \in E$ such that $v \in \mathbf{e}$. $\mathbf{e}_D(v) = \Delta_{\{f,g\},o_D(\mathbf{e},f,g)=\sigma_D(\mathbf{e},f,g)}\{\{e',f,g\}: \sigma_D(e',f,g) = o_D(e',f,g)\}$

 $\clubsuit_D(v) := \{ \{e, f, g\} : v \in e, f, g \text{ and } \sigma_D(e, f, g) = o_D(e, f, g) \}$

Claim 2. Let *D* be a \mathbb{Z}_2 -embedding. If $\clubsuit_D(v) = \binom{\delta(v)}{3}$, for all $v \in V$, then *D* can be made strong while keeping the rotation at every vertex.

Claim 1. $|\{\{e_1, e_2, e_3\} \subset \{e, f, g, h\} : \sigma_D(e_1, e_2, e_3) = o_D(e_1, e_2, e_3)\}| =_2 0$

Corollary 1. Let $\mathbf{e} \in E$ such that $v \in \mathbf{e}$. $\mathbf{P}_D(v) = \Delta_{\{f,g\},o_D(\mathbf{e},f,g)=\sigma_D(\mathbf{e},f,g)}\{\{e',f,g\}: \sigma_D(e',f,g) = o_D(e',f,g)\}$ *Proof.* Obviously, $\{\mathbf{e}, f, g\} \in \mathbf{P}_D(v)$ iff it appears as an element of exactly one summand of Δ . Let $\{e', f, g\}, e' \neq \mathbf{e}$. Then by **Claim 1.** applied to $\{\mathbf{e}, e', f, g\}, \{e', f, g\} \in \mathbf{P}_D(v)$ iff it appears once or three times. \Box

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Claim 3. For every pair $e, f \in v \in E$, $T_D(v, e)$ is acyclic if and only if $T_D(v, f)$ is acyclic.

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Claim 3. For every pair $e, f \in v \in E$, $T_D(v, e)$ is acyclic if and only if $T_D(v, f)$ is acyclic. Proof. If $T_D(v, e)$ is acyclic then we obtain D' so that $\sigma_{D'}(e, g, h) = o_{D'}(e, g, h)$ for all $g, h \ni v$. It follows by Claim 1. that $\sigma_{D'}(e', g, h) = o_{D'}(e', g, h)$ for all $e', g, h \ni v$.

\mathbb{Z}_2 -rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Claim 3. For every pair $e, f \in v \in E$, $T_D(v, e)$ is acyclic if and only if $T_D(v, f)$ is acyclic. Proof. If $T_D(v, e)$ is acyclic then we obtain D' so that $\sigma_{D'}(e, g, h) = o_{D'}(e, g, h)$ for all $g, h \ni v$. It follows by Claim 1. that $\sigma_{D'}(e', g, h) = o_{D'}(e', g, h)$ for all $e', g, h \ni v$. By the corollary, applied with $\mathbf{e} := f$ and D := D' we obtain $\sigma_D(f, g, h) = \sigma_{D'}(f, g, h) = o_{D'}(f, g, h)$.

\mathbb{Z}_2 -rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Claim 3. For every pair $e, f \in v \in E$, $T_D(v, e)$ is acyclic if and only if $T_D(v, f)$ is acyclic.

A drawing D of a graph G is \mathbb{Z}_2 -acyclic if $T_D(v, e)$ is acyclic for all $v \in e \in E$.

\mathbb{Z}_2 -rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_2 -rotation tournament is the tournament $T_D(v, e)$ on $\{f \in E : v \in f\} \setminus \{e\}$ s.t. \overrightarrow{fg} if $\sigma_D(e, f, g) = +1$.

Claim 3. For every pair $e, f \in v \in E$, $T_D(v, e)$ is acyclic if and only if $T_D(v, f)$ is acyclic.

A drawing D of a graph G is \mathbb{Z}_2 -acyclic if $T_D(v, e)$ is acyclic for all $v \in e \in E$.

Corollary 2. If G admits a \mathbb{Z}_2 -acyclic \mathbb{Z}_2 -embedding D on a surface S then G admits a strong \mathbb{Z}_2 -embedding on S.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_2 -embedding on S then G can be embedded on S.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_2 -embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_2 -acyclic \mathbb{Z}_2 -embedding D on S then G can be embedded on S.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_2 -embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_2 -acyclic \mathbb{Z}_2 -embedding D on S then G can be embedded on S.

Corollary 4. If the restrictions of a drawing D of G to all 4-stars of G are \mathbb{Z}_2 -acyclic then D is \mathbb{Z}_2 -acyclic.

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_2 -embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_2 -acyclic \mathbb{Z}_2 -embedding D on S then G can be embedded on S.

Corollary 4. If the restrictions of a drawing D of G to all 4-stars of G are \mathbb{Z}_2 -acyclic then D is \mathbb{Z}_2 -acyclic.

Claim 4. Every planar \mathbb{Z}_2 -embedding of a 3-connected graph G is \mathbb{Z}_2 -acyclic.

$\mathbf{K_{3,n}}$

$K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$

$\mathbf{K}_{\mathbf{3},\mathbf{n}}$

 $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$ Let *T* be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \dots, a(n-1).$ T0123 \dots

$\mathbf{K_{3,n}}$

 $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$ Let T be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \ldots, a(n-1).$ Let D be a drawing of $K_{3,n}$ in the plane such that $|D(e) \cap D(f)|_2 = 0$ if $e \in T$ and $e \cap f = \emptyset$. **Claim 5.** Either for all $i \neq j$, $|D(bi) \cap D(cj)| =_2 0$ iff $(ai, aj) \in T_D(a, a0)$; or for all $i \neq j$, $|D(bi) \cap D(cj)| =_2 1$ iff

 $(ai, aj) \in T_D(a, a0).$

$\mathbf{K_{3,n}}$

 $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$ Let T be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \ldots, a(n-1).$ Let D be a drawing of $K_{3,n}$ in the plane such that $|D(e) \cap D(f)|_2 = 0$ if $e \in T$ and $e \cap f = \emptyset$. **Claim 5.** Either for all $i \neq j$, $|D(bi) \cap D(cj)| =_2 0$ iff

 $(ai, aj) \in T_D(a, a0)$; or for all $i \neq j$, $|D(bi) \cap D(cj)| =_2 1$ iff $(ai, aj) \in T_D(a, a0)$.

Corollary 5. The rank of the n-1 by n-1 matrix $M = (m_{ij})$ over \mathbb{Z}_2 , where $m_{ij} =_2 |D(bi) \cap D(cj)|$, is at least $\lceil \frac{n-2}{2} \rceil$.

$\mathbf{K}_{3,n}$ $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$

Let T be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3,n}$ in the plane such that $|D(e) \cap D(f)|_2 = 0$ if $e \in T$ and $e \cap f = \emptyset$.

Claim 6. *Either for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 0$ *iff* $(ai, aj) \in T_D(a, a0)$; *or for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 1$ *iff* $(ai, aj) \in T_D(a, a0)$.

Corollary 6. The rank of the n-1 by n-1 matrix $M = (m_{ij})$ over \mathbb{Z}_2 , where $m_{ij} =_2 |D(bi) \cap D(cj)|$, is at least $\lceil \frac{n-2}{2} \rceil$.

$\mathbf{K}_{3,n}$ $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$

Let T be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3,n}$ in the plane such that $|D(e) \cap D(f)|_2 = 0$ if $e \in T$ and $e \cap f = \emptyset$.

Claim 6. *Either for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 0$ *iff* $(ai, aj) \in T_D(a, a0)$; *or for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 1$ *iff* $(ai, aj) \in T_D(a, a0)$.

Corollary 6. The rank of the n-1 by n-1 matrix $M = (m_{ij})$ over \mathbb{Z}_2 , where $m_{ij} =_2 |D(bi) \cap D(cj)|$, is at least $\lceil \frac{n-2}{2} \rceil$. *Proof.* $M + M^T = I_{n-1} + J_{n-1}$, and thus, $\operatorname{rank}(M^T) + \operatorname{rank}(M) \ge \operatorname{rank}(I_{n-1} + J_{n-1}) = n-2$.

$\mathbf{K}_{3,n}$ $K_{3,n} = (\{a, b, c\} \cup \{0, \dots, n-1\}, \{a0, \dots, a(n-1), b0, c0\})$

Let T be the spanning tree in $K_{3,n}$ with edges $a0, b0, c0, a1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3,n}$ in the plane such that $|D(e) \cap D(f)|_2 = 0$ if $e \in T$ and $e \cap f = \emptyset$.

Claim 6. *Either for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 0$ *iff* $(ai, aj) \in T_D(a, a0)$; *or for all* $i \neq j$, $|D(bi) \cap D(cj)| =_2 1$ *iff* $(ai, aj) \in T_D(a, a0)$.

Corollary 6. The rank of the n-1 by n-1 matrix $M = (m_{ij})$ over \mathbb{Z}_2 , where $m_{ij} =_2 |D(bi) \cap D(cj)|$, is at least $\lceil \frac{n-2}{2} \rceil$. *Proof.* $M + M^T = I_{n-1} + J_{n-1}$, and thus, $\operatorname{rank}(M^T) + \operatorname{rank}(M) \ge \operatorname{rank}(I_{n-1} + J_{n-1}) = n-2$.

Corollary 7. If $K_{3,n}$ admits a \mathbb{Z}_2 -embedding on a surface S then $K_{3,n}$ embeds on S.

Can we decide in a polynomial time if a given graph \mathbb{Z}_2 -embeds on a given surface?

Can we decide in a polynomial time if a given graph \mathbb{Z}_2 -embeds on a given surface?

Computing the orientable \mathbb{Z}_2 -genus is NP-hard. (Follows by the result of Thomassen showing NP-hardness for computing the orientable genus of cubic graphs.)

Can we decide in a polynomial time if a given graph \mathbb{Z}_2 -embeds on a given surface?

Computing the orientable \mathbb{Z}_2 -genus is NP-hard. (Follows by the result of Thomassen showing NP-hardness for computing the orientable genus of cubic graphs.)

Does $eg(G) = eg_0(G)$ where eg(G) and $eg_0(G)$ is the Euler genus and Euler \mathbb{Z}_2 -genus, respectively?(Conjecture by Schaefer and Štefankovič)