\mathbb{Z}_{2}-embeddings and Tournaments

Radoslav Fulek, Jan Kynčl

\mathbb{Z}_{2}-embeddings and Tournaments

Institute of Science and Technology
Radoslav Fulek, Jan Kynčl

June 12, 2018

Drawings of Graphs

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Formally, $D(e)$ is injective for every edge, $C=\left\{\mathbf{p} \in S:\left|D^{-1}[\mathbf{p}]\right|>1\right\}$ is finite, and every $\mathbf{p} \in C$ is a proper edge crossing of exactly two edges.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Drawings of Graphs

$G=(V, E)$ is a simple graph. The set of vertices V is finite and the set of edges $E \subseteq\binom{V}{2}$. We treat G as a 1-dimensional simplicial complex.

A drawing D of G on a 2-dimensional surface S is a generic and "nice" continuous map $D: G \rightarrow S$. By "generic" we mean that the set of its self-intersections is finite and consisting only of transversal edge intersections, i.e., proper edge crossings.

Injective D is an embedding.
\mathbb{Z}_{2}-embeddings

\mathbb{Z}_{2}-embeddings

Let D be a drawing of a graph G.

\mathbb{Z}_{2}-embeddings

Let D be a drawing of a graph G.
Let $I_{D(G)}=\left\{\left.\{e, f\} \in\binom{E}{2}|e \cap f=\emptyset \&| D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}=\emptyset$ is a \mathbb{Z}_{2}-embedding.

\mathbb{Z}_{2}-embeddings

Let D be a drawing of a graph G.
Let $I_{D(G)}=\left\{\left.\{e, f\} \in\binom{E}{2}|e \cap f=\emptyset \&| D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}=\emptyset$ is a \mathbb{Z}_{2}-embedding.
Theorem 1 (Hanani-Tutte, 1934-1970). If G admits a \mathbb{Z}_{2}-embedding in the plane then G is planar.

\mathbb{Z}_{2}-embeddings

Let D be a drawing of a graph G.
Let $I_{D(G)}=\left\{\left.\{e, f\} \in\binom{E}{2}|e \cap f=\emptyset \&| D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}=\emptyset$ is a \mathbb{Z}_{2}-embedding.
Theorem 1 (Hanani-Tutte, 1934-1970). If G admits a \mathbb{Z}_{2}-embedding in the plane then G is planar.

Let $I_{D(G)}^{\circ}=\left\{\left.\{e, f\} \in\binom{E}{2}| | D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}^{\circ}=\emptyset$ is a strong \mathbb{Z}_{2}-embedding.

\mathbb{Z}_{2}-embeddings

Let D be a drawing of a graph G.
Let $I_{D(G)}=\left\{\left.\{e, f\} \in\binom{E}{2}|e \cap f=\emptyset \&| D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}=\emptyset$ is a \mathbb{Z}_{2}-embedding.
Theorem 1 (Hanani-Tutte, 1934-1970). If G admits a \mathbb{Z}_{2}-embedding in the plane then G is planar.

Let $I_{D(G)}^{\circ}=\left\{\left.\{e, f\} \in\binom{E}{2}| | D(e) \cap D(f) \right\rvert\,={ }_{2} 1\right\}$.
A drawing for which $I_{D(G)}^{\circ}=\emptyset$ is a strong \mathbb{Z}_{2}-embedding.
Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_{2}-embedding on S then G can be embedded on S.

\mathbb{Z}_{2}-rotation Order Type

\mathbb{Z}_{2}-rotation Order Type

Let D be a drawing of $G=(V, E)$ on a surface S.

\mathbb{Z}_{2}-rotation Order Type

Let D be a drawing of $G=(V, E)$ on a surface S.
For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v.

$$
o_{D}(e, f, g)=-1
$$

\mathbb{Z}_{2}-rotation Order Type

Let D be a drawing of $G=(V, E)$ on a surface S.
For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v.

$o_{D}(e, f, g)=-1$
$\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where
$\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$

\mathbb{Z}_{2}-rotation Order Type

Let D be a drawing of $G=(V, E)$ on a surface S.
For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v.

$o_{D}(e, f, g)=-1$
$\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where
$\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$
$\sigma_{D}(e, f, g)$ does not change after a flip

\mathbb{Z}_{2}-rotation Order Type (cont')

For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v. $\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$

\mathbb{Z}_{2}-rotation Order Type (cont')

For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v. $\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_{D} and o_{D} return the same value.

\mathbb{Z}_{2}-rotation Order Type (cont')

For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v. $\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_{D} and o_{D} return the same value.

Claim 1. $\left|\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \subset\{e, f, g, h\}: \sigma_{D}\left(e_{1}, e_{2}, e_{3}\right)=o_{D}\left(e_{1}, e_{2}, e_{3}\right)\right\}\right|==_{2} 0$

\mathbb{Z}_{2}-rotation Order Type (cont')

For $v \in e, f, g \in E, o_{D}(e, f, g)=+1$ and $o_{D}(e, f, g)=-1$ if e, f and g appear ccw and cw , resp., in the rotation at v. $\sigma_{D}(e, f, g)=o_{D}(e, f, g) \cdot(-1)^{\operatorname{cr}(\{e, f, g\})}$, where $\operatorname{cr}(\{e, f, g\})=|D(e) \cap D(f)|+|D(e) \cap D(g)|+|D(f) \cap D(g)|$

We count the number of 3 element subsets of $\{e, f, g, h \ni v\}$ for which σ_{D} and o_{D} return the same value.

Claim 1. $\left|\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \subset\{e, f, g, h\}: \sigma_{D}\left(e_{1}, e_{2}, e_{3}\right)=o_{D}\left(e_{1}, e_{2}, e_{3}\right)\right\}\right|==_{2} 0$
Proof. We count the number of 3 element subsets for which $\operatorname{cr}\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)={ }_{2} 0$. Thus, we count the number of triples of vertices in a graph with 4 vertices inducing an even number of edges. This number must be even.

\mathbb{Z}_{2}-rotation Order Type (cont')

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\AA}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\AA}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$
Claim 2. Let D be a \mathbb{Z}_{2}-embedding. If $\boldsymbol{@}_{D}(v)=\binom{\delta(v)}{3}$, for all $v \in V$, then D can be made strong while keeping the rotation at every vertex.

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\leftrightarrow}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$
Claim 2. Let D be a \mathbb{Z}_{2}-embedding. If $\boldsymbol{@}_{D}(v)=\binom{\delta(v)}{3}$, for all $v \in V$, then D can be made strong while keeping the rotation at every vertex.
Proof. Let $G_{a u x}(v)=\left(\delta(v), E^{\prime}\right)$, where ef $\in E^{\prime}$, if
$|D(e) \cap D(f)|={ }_{2} 1$. $G_{\text {aux }}(v)$ must be a complete bipartite graph. Pushing every edge in one part over v renders $G_{a u x}(v)$ empty.

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\AA}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$
Claim 2. Let D be a \mathbb{Z}_{2}-embedding. If $\boldsymbol{@}_{D}(v)=\binom{\delta(v)}{3}$, for all $v \in V$, then D can be made strong while keeping the rotation at every vertex.

Claim 1. $\left|\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \subset\{e, f, g, h\}: \sigma_{D}\left(e_{1}, e_{2}, e_{3}\right)=o_{D}\left(e_{1}, e_{2}, e_{3}\right)\right\}\right|==_{2} 0$

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\AA}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$
Claim 2. Let D be a \mathbb{Z}_{2}-embedding. If $\boldsymbol{@}_{D}(v)=\binom{\delta(v)}{3}$, for all $v \in V$, then D can be made strong while keeping the rotation at every vertex.

Claim 1. $\left|\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \subset\{e, f, g, h\}: \sigma_{D}\left(e_{1}, e_{2}, e_{3}\right)=o_{D}\left(e_{1}, e_{2}, e_{3}\right)\right\}\right|==_{2} 0$
Corollary 1. Let $\mathbf{e} \in E$ such that $v \in \mathbf{e}$.
$\boldsymbol{\leftrightarrow}_{D}(v)=\Delta_{\{f, g\}, o_{D}(\mathbf{e}, f, g)=\sigma_{D}(\mathbf{e}, f, g)}\left\{\left\{e^{\prime}, f, g\right\}: \sigma_{D}\left(e^{\prime}, f, g\right)=o_{D}\left(e^{\prime}, f, g\right)\right\}$

\mathbb{Z}_{2}-rotation Order Type (cont')

$\boldsymbol{\leftrightarrow}_{D}(v):=\left\{\{e, f, g\}: v \in e, f, g\right.$ and $\left.\sigma_{D}(e, f, g)=o_{D}(e, f, g)\right\}$
Claim 2. Let D be a \mathbb{Z}_{2}-embedding. If $\boldsymbol{@}_{D}(v)=\binom{\delta(v)}{3}$, for all $v \in V$, then D can be made strong while keeping the rotation at every vertex.

Claim 1. $\left|\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \subset\{e, f, g, h\}: \sigma_{D}\left(e_{1}, e_{2}, e_{3}\right)=o_{D}\left(e_{1}, e_{2}, e_{3}\right)\right\}\right|==_{2} 0$
Corollary 1. Let $\mathbf{e} \in E$ such that $v \in \mathbf{e}$.
$\dot{\boldsymbol{\varphi}}_{D}(v)=\Delta_{\{f, g\}, o_{D}(\mathbf{e}, f, g)=\sigma_{D}(\mathbf{e}, f, g)}\left\{\left\{e^{\prime}, f, g\right\}: \sigma_{D}\left(e^{\prime}, f, g\right)=o_{D}\left(e^{\prime}, f, g\right)\right\}$ Proof. Obviously, $\{\mathbf{e}, f, g\} \in \boldsymbol{母}_{D}(v)$ iff it appears as an element of exactly one summand of Δ. Let $\left\{e^{\prime}, f, g\right\}, e^{\prime} \neq \mathbf{e}$. Then by Claim 1. applied to $\left\{\mathbf{e}, e^{\prime}, f, g\right\},\left\{e^{\prime}, f, g\right\} \in \boldsymbol{\varphi}_{D}(v)$ iff it appears once or three times.
\mathbb{Z}_{2}-rotation Tournaments

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f g}$ if $\sigma_{D}(e, f, g)=+1$.

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f g}$ if $\sigma_{D}(e, f, g)=+1$.

Claim 3. For every pair $e, f \in v \in E, T_{D}(v, e)$ is acyclic if and only if $T_{D}(v, f)$ is acyclic.

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f g}$ if $\sigma_{D}(e, f, g)=+1$.

Claim 3. For every pair $e, f \in v \in E, T_{D}(v, e)$ is acyclic if and only if $T_{D}(v, f)$ is acyclic.
Proof. If $T_{D}(v, e)$ is acyclic then we obtain D^{\prime} so that $\sigma_{D^{\prime}}(e, g, h)=o_{D^{\prime}}(e, g, h)$ for all $g, h \ni v$. It follows by Claim 1. that $\sigma_{D^{\prime}}\left(e^{\prime}, g, h\right)=o_{D^{\prime}}\left(e^{\prime}, g, h\right)$ for all $e^{\prime}, g, h \ni v$.

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f g}$ if $\sigma_{D}(e, f, g)=+1$.

Claim 3. For every pair $e, f \in v \in E, T_{D}(v, e)$ is acyclic if and only if $T_{D}(v, f)$ is acyclic.
Proof. If $T_{D}(v, e)$ is acyclic then we obtain D^{\prime} so that $\sigma_{D^{\prime}}(e, g, h)=o_{D^{\prime}}(e, g, h)$ for all $g, h \ni v$. It follows by Claim 1. that $\sigma_{D^{\prime}}\left(e^{\prime}, g, h\right)=o_{D^{\prime}}\left(e^{\prime}, g, h\right)$ for all $e^{\prime}, g, h \ni v$. By the corollary, applied with $\mathbf{e}:=f$ and $D:=D^{\prime}$ we obtain $\sigma_{D}(f, g, h)=\sigma_{D^{\prime}}(f, g, h)=o_{D^{\prime}}(f, g, h)$.

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f_{g}}$ if $\sigma_{D}(e, f, g)=+1$.

Claim 3. For every pair $e, f \in v \in E, T_{D}(v, e)$ is acyclic if and only if $T_{D}(v, f)$ is acyclic.

A drawing D of a graph G is \mathbb{Z}_{2}-acyclic if $T_{D}(v, e)$ is acyclic for all $v \in e \in E$.

\mathbb{Z}_{2}-rotation Tournaments

Let $v \in e \in E$. The \mathbb{Z}_{2}-rotation tournament is the tournament $T_{D}(v, e)$ on $\{f \in E: v \in f\} \backslash\{e\}$ s.t. $\overrightarrow{f g}$ if $\sigma_{D}(e, f, g)=+1$.

Claim 3. For every pair $e, f \in v \in E, T_{D}(v, e)$ is acyclic if and only if $T_{D}(v, f)$ is acyclic.

A drawing D of a graph G is \mathbb{Z}_{2}-acyclic if $T_{D}(v, e)$ is acyclic for all $v \in e \in E$.

Corollary 2. If G admits a \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embedding D on a surface S then G admits a strong \mathbb{Z}_{2}-embedding on S.

Making \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embeddings Strong

Making \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embeddings Strong

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_{2}-embedding on S then G can be embedded on S.

Making \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embeddings Strong

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_{2}-embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embedding D on S then G can be embedded on S.

Making \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embeddings Strong

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_{2}-embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embedding D on S then G can be embedded on S.

Corollary 4. If the restrictions of a drawing D of G to all 4-stars of G are \mathbb{Z}_{2}-acyclic then D is \mathbb{Z}_{2}-acyclic.

Making \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embeddings Strong

Theorem 2 (Cairns and Nikolayevsky 2000, Pelsmajer, Schaefer, and Štefankovič 2009). If a graph G admits a strong \mathbb{Z}_{2}-embedding on S then G can be embedded on S.

Corollary 3. If G admits a \mathbb{Z}_{2}-acyclic \mathbb{Z}_{2}-embedding D on S then G can be embedded on S.

Corollary 4. If the restrictions of a drawing D of G to all 4-stars of G are \mathbb{Z}_{2}-acyclic then D is \mathbb{Z}_{2}-acyclic.

Claim 4. Every planar \mathbb{Z}_{2}-embedding of a 3-connected graph G is \mathbb{Z}_{2}-acyclic.
$\mathbf{K}_{\mathbf{3}, \mathbf{n}}$

$$
K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})
$$

$\mathbf{K}_{\mathbf{3}, \mathbf{n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$ Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots \dot{b}, a(n-1)$.

$\mathbf{K}_{\mathbf{3 , n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$ Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots \dot{b}, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
$K_{\mathbf{3}, \mathbf{n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$
Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, \underset{a}{a}, a 1, \ldots \underset{b}{b}, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
Claim 5. Either for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 0$ iff $(a i, a j) \in T_{D}(a, a 0)$; or for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 1$ iff $(a i, a j) \in T_{D}(a, a 0)$.

$\mathbf{K}_{\mathbf{3 , n}}$

$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$
Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots \dot{b}, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
Claim 5. Either for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 0$ iff $(a i, a j) \in T_{D}(a, a 0)$; or for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 1$ iff $(a i, a j) \in T_{D}(a, a 0)$.
Corollary 5. The rank of the $n-1$ by $n-1$ matrix $M=\left(m_{i j}\right)$ over \mathbb{Z}_{2}, where $m_{i j}={ }_{2}|D(b i) \cap D(c j)|$, is at least $\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathbf{K}_{\mathbf{3}, \mathbf{n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$

Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
Claim 6. Either for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 0$ iff $(a i, a j) \in T_{D}(a, a 0)$; or for all $i \neq j,|D(b i) \cap D(c j)|=21$ iff $(a i, a j) \in T_{D}(a, a 0)$.
Corollary 6. The rank of the $n-1$ by $n-1$ matrix $M=\left(m_{i j}\right)$ over \mathbb{Z}_{2}, where $m_{i j}=2|D(b i) \cap D(c j)|$, is at least $\left\lceil\frac{n-2}{2}\right\rceil$.
$\mathbf{K}_{\mathbf{3 , n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$
Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
Claim 6. Either for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 0$ iff $(a i, a j) \in T_{D}(a, a 0)$; or for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 1$ iff $(a i, a j) \in T_{D}(a, a 0)$.
Corollary 6 . The rank of the $n-1$ by $n-1$ matrix $M=\left(m_{i j}\right)$ over \mathbb{Z}_{2}, where $m_{i j}=2|D(b i) \cap D(c j)|$, is at least $\left\lceil\frac{n-2}{2}\right\rceil$.
Proof. $M+M^{T}=I_{n-1}+J_{n-1}$, and thus, $\operatorname{rank}\left(M^{T}\right)+\operatorname{rank}(M) \geq \operatorname{rank}\left(I_{n-1}+J_{n-1}\right)=n-2$.
$\mathbf{K}_{\mathbf{3 , n}}$
$K_{3, n}=(\{a, b, c\} \cup\{0, \ldots, n-1\},\{a 0, \ldots, a(n-1), b 0, c 0\})$
Let T be the spanning tree in $K_{3, n}$ with edges $a 0, b 0, c 0, a 1, \ldots, a(n-1)$.

Let D be a drawing of $K_{3, n}$ in the plane such that $|D(e) \cap D(f)|_{2}=0$ if $e \in T$ and $e \cap f=\emptyset$.
Claim 6. Either for all $i \neq j,|D(b i) \cap D(c j)|={ }_{2} 0$ iff $(a i, a j) \in T_{D}(a, a 0)$; or for all $i \neq j,|D(b i) \cap D(c j)|=21$ iff $(a i, a j) \in T_{D}(a, a 0)$.
Corollary $\mathbf{6}$. The rank of the $n-1$ by $n-1$ matrix $M=\left(m_{i j}\right)$ over \mathbb{Z}_{2}, where $m_{i j}=2|D(b i) \cap D(c j)|$, is at least $\left\lceil\frac{n-2}{2}\right\rceil$.
Proof. $M+M^{T}=I_{n-1}+J_{n-1}$, and thus, $\operatorname{rank}\left(M^{T}\right)+\operatorname{rank}(M) \geq \operatorname{rank}\left(I_{n-1}+J_{n-1}\right)=n-2$.

Corollary 7. If $K_{3, n}$ admits a \mathbb{Z}_{2}-embedding on a surface S then $K_{3, n}$ embeds on S.

Unsolved problems

Unsolved problems

Can we decide in a polynomial time if a given graph \mathbb{Z}_{2}-embeds on a given surface?

Unsolved problems

Can we decide in a polynomial time if a given graph \mathbb{Z}_{2}-embeds on a given surface?

Computing the orientable \mathbb{Z}_{2}-genus is NP-hard. (Follows by the result of Thomassen showing NP-hardness for computing the orientable genus of cubic graphs.)

Unsolved problems

Can we decide in a polynomial time if a given graph \mathbb{Z}_{2}-embeds on a given surface?

Computing the orientable \mathbb{Z}_{2}-genus is NP-hard. (Follows by the result of Thomassen showing NP-hardness for computing the orientable genus of cubic graphs.)

Does $e g(G)=e g_{0}(G)$ where $e g(G)$ and $e g_{0}(G)$ is the Euler genus and Euler \mathbb{Z}_{2}-genus, respectively?(Conjecture by Schaefer and Štefankovič)

