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A Product Inequality

Let p1, . . . , pn be n distinct points in the plane, and assume that the
minimum inter-point distance occurs smin times, while the maximum
inter-point distance occurs smax times.

Erdős and Pach (1990) asked for a proof or disproof of the following
product inequality:

sminsmax ≤
9

8
n2 + o(n2).

Here it is shown that sminsmax ≤ 9
8n

2 +O(n).
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A Product Inequality
The authors also remarked that this inequality, if true, essentially
cannot be improved; and this would follow from a construction of
E. Makai Jr. (not discussed in their paper).

3n/4

n/4

An n-element point set with 3
4n points on the convex hull and 1

4n
interior points. 3

4n − 1 boundary points are evenly distributed on
a circular arc centered at the leftmost point. smin = 3

4n + 3
4n −

O(
√
n) = 3

2n−O(
√
n), and smax = 3

4n (provided that the circular
arc subtends an angle of 60◦), and so sminsmax = 9

8n
2 − O(n

√
n).

The m = 1
4n interior points make a section of a unit triangular

lattice with b3m−
√

12m− 3c unit distances, where the minimum
inter-point distance is equal to 1.
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Preliminaries
I Let S = {p1, . . . , pn} be a set of n distinct points in the

plane. Given two points p and q, let `(p, q) denote the line
determined by p and q. Let δ and ∆ denote the minimum and
maximum pairwise distance of S, respectively. We may
assume that δ = 1; a standard packing argument yields
∆ = Ω(

√
n). Let G := Gδ and G∆ denote the respective

graphs. It is well-known that |E(Gδ)| ≤ 3n and |E(G∆)| ≤ n.

I For any point u ∈ S, let deg(u) denote its degree in G; it is
well known that deg(u) ≤ 6 for any u ∈ S. For any point
u ∈ S, let Γ(u) = {v ∈ S : uv ∈ E(Gδ}; i.e., Γ(u) is the set
of vertices adjacent to u in G. For a point u, let x(u) and
y(u) denote its x- and y-coordinates respectively.

I For a point set S, conv(S) denotes the convex hull of S,
while ∂conv(S) denotes the boundary of conv(S).

I For a vertex u ∈ H, let u− and u+ denote the vertices that
precede and succeed u, respectively, in clockwise order.
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Proof setup
Let H ⊆ S denote the set of (extreme) vertices of conv(S); labeled
in clockwise order. We say that a vertex ui ∈ H has a flat neighbor-
hood if the interior angles of the seven vertices ui−3, ui−2, ui−1, ui,
ui+1, ui+2, and ui+3 all belong to the interval (179◦, 180◦). Observe
that the number of vertices of conv(S) that are not flat is O(1).

uiui−1
ui+1

u′

ui+2ui−2
ui−3

ui−4

ui+4
ui+3

The flat neighborhood of ui and a diameter pair (ui, u
′
i).
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Proof setup

Let F ⊆ H denote the set of (extreme) vertices of conv(S) that
have flat neighborhoods. Let D ⊆ H denote the set of (extreme)
vertices of conv(S) that are endpoints of some diameter pair. Put
|D| = d, f = |F |, and h = |H|; as such, d ≤ h and f ≤ h.
The set of points S can be partitioned into three parts as S =
H ∪H ′ ∪ I, where

I H is the set of extreme vertices of conv(S); an element of H
can be in any of the following sets D ∩ F , D \ F , F \D, or in
neither of the two.

I H ′ is the set of points on ∂conv(S) that are not in H (the
interior angle of each vertex in H ′ is 180◦).

I I is the set of interior vertices, i.e., those that are not on
∂conv(S).
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Proof setup

As mentioned earlier, we have smax ≤ d ≤ h. Indeed, the endpoints
of any diameter pair must be extreme points on the boundary of
conv(S).

If d ≤ n/2, then smax ≤ d ≤ n/2 and consequently, sminsmax ≤
3
2n

1
2n < n2, as required (with room to spare).

→ We therefore subsequently assume that h ≥ d ≥ n/2.
Recall that δ = 1; and G := Gδ, and G∆ is the diameter graph.

Lemma
If h ≥ n/2, then ∆ ≥ n

2π ; in particular ∆ = Ω(n).

Proof.
Let p = per(conv(S)) Since δ = 1 and h ≥ n/2, we have p ≥ n/2.
By a standard isoperimetric inequality, p ≤ π∆. Putting the two
inequalities together yields ∆ ≥ n

2π , as required. �
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Proof setup: a rotating coordinate system used when
charging u

For any extreme vertex u ∈ H, let Σu be an orthogonal coordinate
system whose origin is u, and where the x-axis is a supporting line
of conv(S) incident to u, and S lies in the closed halfplane below
the x-axis. If uu+ ∈ G and there exists v ∈ I s.t. vu, vu+ ∈ G, the
x-axis of Σu will be chosen as the direction of next side (clockwise),
#     »

uu+; otherwise, the x-axis of Σu will be chosen so that S \ {u} lies
strictly below this line.

u

u

v ∈ Γ(u) ∪ Γ(Γ(u))

Σu
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Proof setup
Assume that each vertex ui ∈ D ∩F of degree 3 in G is charged to
some interior vertex v ∈ Γ(ui) ∪ Γ(Γ(ui)), of degree at most 5; so
that the final charge of each interior vertex is at most 6; with each
vertex receiving a charge at most 2.

uiui−1
ui+1

u′

ui+2ui−2
ui−3

ui−4

ui+4
ui+3

Lemma
Let ui ∈ D ∩ F be charged to some v ∈ Γ(ui) ∪ Γ(Γ(ui)), where v
is not necessarily unique. Then no vertex in
H \ {ui−3, ui−2, ui−1, ui+1, ui+2, ui+3} can send any charge to v.

8 / 26



An upper bound on smin (from the same assumption)

Lemma
smin ≤ 3n− 2d+O(1).

Proof. Assume that that each element of I carries an initial charge
equal to its degree in G (at most 6). Each element of H has degree
at most 3; if deg(u) = 4, then the interior angle at u equals 180◦,
and so u is not an extreme vertex of conv(S). In particular, each
element of D ∩ F has degree at most 3.
Observe that |F ∩ D| ≥ |D| − O(1), since there are only O(1)
elements of D that do not have flat neighborhoods. Assuming the
charging procedure complete, we have

2smin =
∑
p∈S

deg(p) ≤ 3|H \ F ∩D|+ 2|F ∩D|+ 6|S \H|

= 3h− 3|F ∩D|+ 2|F ∩D|+ 6n− 6h

= 6n− 3h− |F ∩D| ≤ 6n− 3d− d+O(1)

= 6n− 4d+O(1),

as required. �
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The resulting product inequality

Using the inequalities on smin and smax :
smin ≤ 3n− 2d+O(1) and smax ≤ d, we obtain

sminsmax ≤ (3n− 2d+O(1)) d ≤ 9

8
n2 +O(n),

as required.

Indeed, setting x = d/n yields the quadratic function
f(x) = x(3− 2x), which attains its maximum value 9

8 for x = 3
4 .

Thus (3n− 2d)d ≤ 9
8n

2, and we also have
O(1)d = O(d) = O(n);
adding these two inequalities yields the one claimed above.
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Charging scheme

Let u1, . . . , uh (where uh+1 = u1) be the extreme vertices of conv(S)
in clockwise order; they are processed one by one in this order (pairs
of adjacent vertices of H corresponding to edges of G are processed
at the same time); equivalently, S is rotated counterclockwise at
each step so as the current vertex processed is the highest in the
current step.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Charging rules

When handling the current vertex ui (of deg. 3), or two consecutive
vertices ui, ui+1 that belong to a unit equilateral triangle, we use
the coordinate system Σui . We distinguish several cases, depending
on whether (i) the middle edge of unit length, say, uivi, connects ui
with an interior vertex of degree 6 or less; and (ii) vi is connected
to one or two vertices on ∂conv(S).

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Charging rules
The following charging rules are observed.

1. Only middle edges are charged (each to one or more interior
vertices).

2. Charging amounts can be 1/2 or 1.

3. Handling ui (distribution of the unit charge on the middle
edge incident to ui) can only make charges to points at
distance at most 2 in G; i.e., it can only affect vertices in
Γ(ui) ∪ Γ(Γ(ui)).

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v

Middle edges are drawn in bold.
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Charging rules

(a) If uivi is the unique unit edge incident to vi connecting vi with
an extreme vertex, S is rotated counterclockwise, so that ui is the
highest vertex in S; see Fig. (left); the angle of rotation is set (arbi-
trarily) so this condition holds.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Charging rules

(b) If uivi and ui+1vi are unit edge incident to vi connecting vi
with two adjacent extreme vertices ui and ui+1 (i.e., uiui+1 ∈ G),
S is rotated counterclockwise, so that uiui+1 is horizontal and S is
contained in the closed halfplane below uiui+1; see Fig. (middle).

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Charging rules

(c) If uiv and ui+1v are unit edge incident to v connecting v with two
non-adjacent extreme vertices ui and ui+1 (i.e., |uiui+1| > 1), then
uiv and ui+1v are not middle edges, and so we are in the situation
described in (a) or (b); see Fig. (right), where middle edges uivi and
ui+1vi+1 will be the ones charged to interior vertices.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Properties
The following properties can be proven (as part of the charging
scheme analysis).

1. A vertex of degree 5 receives at most 1/2 charge from the
left, and at most 1/2 charge from the right; or receives at
most one unit of charge otherwise.

2. A vertex of degree at most 4 receives at most one unit of
charge from the left, and at most one unit of charge from the
right.

3. Write u = ui. Consider the coordinate system Σu, and the
rectangle Ru = [x(u)− 7/4, x(u) + 7/4]× [y(u)− 2, y(u)].
By the charging scheme, u can only send charges to interior
vertices contained in Ru.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v
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Case 1: deg(vi) = 6, and uivi is the unique unit edge incident to
vi connecting vi with an extreme vertex. Let a, b ∈ Γ(ui) ∩ Γ(vi)
be the other two common neighbors of ui and vi on the left and
right, respectively. Note that deg(a) ≤ 5, and similarly, deg(b) ≤ 5;
indeed, if deg(a) = 6 (or deg(b) = 6), one element in Γ(a) (resp.,
Γ(b)) would lie strictly above ui, a contradiction. Distribute the unit
charge on edge uivi into two equal parts: 1/2 to the left interior
vertex a and 1/2 to the right interior vertex b. Observe that a, b ∈
Rui . It will subsequently shown that the charge received by a (or b)
from other nearby vertices on ∂conv(S) is at most 1/2.

ui

vi

a b

ui+1
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Case 2: deg(vi) = 6, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
Note that deg(a) ≤ 5 and deg(b) ≤ 5; indeed, if say, deg(a) = 6
(or deg(b) = 6), the interior angle at ui (resp., at ui+1) would be
180◦, a contradiction, since we have assumed that ui, ui+1 ∈ D.
We further identify other vertices of low degree that will be charged.
Let wi, wi+1 ∈ Γ(vi) be the two neighbors of vi below it. Our
charging scheme is symmetric: we distribute the unit charge of edge
ui+1vi to b and some other interior vertex (the distribution of the
unit charge of edge uivi is analogous, involving a and some other
interior vertex).

ui ui+1

vi
a b

ui ui+1

vi
a b

wi wi+1 wi+2

dc

wi−1
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Case 2: deg(vi) = 6, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
If deg(wi+1) ≤ 5, distribute the unit charge on edge ui+1vi into
two equal parts: 1/2 to interior vertex b and 1/2 to the interior
vertex wi+1. We subsequently assume that deg(wi+1) = 6. Let
wi+2 ∈ Γ(b)∩Γ(wi+1) be the interior vertex on the line `(wi, wi+1)
to the right. If deg(wi+2) ≤ 5, distribute the unit charge on edge
ui+1vi into two equal parts: 1/2 to interior vertex b and 1/2 to the
interior vertex wi+2. We subsequently assume that deg(wi+2) = 6,
...

ui ui+1

vi
a b

ui ui+1

vi
a b

wi wi+1 wi+2

dc

wi−1
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Case 2: deg(vi) = 6, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
We subsequently assume that deg(wi+2) = 6. Let d ∈ Γ(b) ∩
Γ(wi+2) be the interior vertex on the line `(vi, b) to the right. Ob-
serve that deg(d) ≤ 4: since each element of Γ(d) \ {b, wi+2} must
lie strictly below the line `(wi+2, d), there are at most two such ver-
tices. In this last case, distribute the unit charge on edge ui+1vi into
two equal parts: 1/2 to the interior vertex b and 1/2 to the interior
vertex d. Observe that b, d, wi+1, wi+2 ∈ Rui+1 , and similarly that
a, c, wi, wi−1 ∈ Rui .

ui ui+1

vi
a b

ui ui+1

vi
a b

wi wi+1 wi+2

dc

wi−1
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Case 3: deg(vi) ≤ 5, and uivi is the unique unit edge incident
to vi connecting vi with an extreme vertex. If deg(vi) ≤ 4, vi
receives a unit charge. If deg(vi) = 5, let a and b be the two
neighbors of vi left and right of ui, respectively. Let high(a, b)
denote the element of {a, b} which is the highest (i.e., closest to
the x-axis of Σui). Observe that high(a, b) has degree at most 5;
since otherwise, the y-coordinate of one of its neighbors (w.r.t. this
coordinate system) would be non-negative, a contradiction. Further
observe that high(a, b)ui is an edge in G; since otherwise, ui would
not have degree 3 or its interior angle would be 180◦, either of which
is a a contradiction. Distribute the unit charge on edge uivi into
two equal parts: 1/2 unit to vi and 1/2 unit to high(a, b).

ui

vi

b

ui−1 ui+1
ui

vi

c

ui+1ui−1

a

d

Left: b is the highest among {a, b}. Right: c is the highest among
{c, d}.
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Case 4: deg(vi) ≤ 5, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
If deg(vi) ≤ 4, charge uivi and ui+1vi to vi; note that no other
charge will be directed to this vertex. Assume now that deg(vi) = 5
and let wi denote the vertex in Γ(vi) below vi that is farthest from
the edge uiui+1.
If deg(wi) ≤ 5, distribute the two units of charge for edges uivi and
ui+1vi into two equal parts: one unit to vi and one unit to wi.

ui ui+1

vi

wi

ui ui+1

vi

wi

b

a

ui−1 ui+2

Left: deg(wi) = 5. Right: deg(wi) = 6.
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Case 4: deg(vi) ≤ 5, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
Assume now that deg(wi) = 6. We claim that deg(a) ≤ 5 and
deg(b) ≤ 5. We may assume that ∠aviui ≥ 90◦ ≥ ∠bviui+1.
If deg(a) = 6, let vi−1 be the next counterclockwise vertex after vi
in Γ(a). Since the triangle ∆avi−1vi is equilateral, this implies that
vi−1vi is yet another edge in G, which is in contradiction with the
assumption that deg(vi) = 5.

ui ui+1

vi

wi

ui ui+1

vi

wi

b

a

ui−1 ui+2

Left: deg(wi) = 5. Right: deg(wi) = 6.
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Case 4: deg(vi) ≤ 5, where uivi and ui+1vi are unit edge incident
to vi connecting vi with two adjacent extreme vertices ui and ui+1.
If deg(b) = 6, then bui+1 is an edge in G, thus vib ‖ uiui+1 and so
vib is horizontal. Let c be the next clockwise vertex after ui+1 in
Γ(b). Then ui+1c is also horizontal, thus c ∈ ∂conv(S), which im-
plies that the interior angle at ui+1 is 180◦, which is a contradiction
(we have assumed that ui, ui+1 ∈ D).
Distribute the two unit charges for edges uivi and ui+1vi as one unit
to vi, 1/2 unit to a and 1/2 unit to b.

ui ui+1

vi

wi

ui ui+1

vi

wi

b

a

ui−1 ui+2

Left: deg(wi) = 5. Right: deg(wi) = 6.
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Further questions

1. What can be said about the maximum value of the product
sminsmax in higher dimensions?

2. For the plane: Erdős and Pach (1990) also asked what is the
best possible value of the constant c in the sum inequality
below:

smin + smax ≤ 3n− c√n+ o(
√
n).
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THE END


