A PRODUCT INEQUALITY FOR EXTREME DISTANCES

Adrian Dumitrescu

University of Wisconsin-Milwaukee

A Product Inequality

Let p_1, \ldots, p_n be n distinct points in the plane, and assume that the minimum inter-point distance occurs s_{\min} times, while the maximum inter-point distance occurs s_{\max} times.

Erdős and Pach (1990) asked for a proof or disproof of the following product inequality:

$$s_{\min}s_{\max} \le \frac{9}{8}n^2 + o(n^2).$$

Here it is shown that $s_{\min}s_{\max} \leq \frac{9}{8}n^2 + O(n)$.

A Product Inequality

The authors also remarked that this inequality, if true, essentially cannot be improved; and this would follow from a construction of E. Makai Jr. (not discussed in their paper).

An *n*-element point set with $\frac{3}{4}n$ points on the convex hull and $\frac{1}{4}n$ interior points. $\frac{3}{4}n - 1$ boundary points are evenly distributed on a circular arc centered at the leftmost point. $s_{\min} = \frac{3}{4}n + \frac{3}{4}n - O(\sqrt{n}) = \frac{3}{2}n - O(\sqrt{n})$, and $s_{\max} = \frac{3}{4}n$ (provided that the circular arc subtends an angle of 60°), and so $s_{\min}s_{\max} = \frac{9}{8}n^2 - O(n\sqrt{n})$. The $m = \frac{1}{4}n$ interior points make a section of a unit triangular lattice with $\lfloor 3m - \sqrt{12m - 3} \rfloor$ unit distances, where the minimum inter-point distance is equal to 1.

Preliminaries

- ▶ Let $S = \{p_1, \ldots, p_n\}$ be a set of n distinct points in the plane. Given two points p and q, let $\ell(p,q)$ denote the line determined by p and q. Let δ and Δ denote the minimum and maximum pairwise distance of S, respectively. We may assume that $\delta = 1$; a standard packing argument yields $\Delta = \Omega(\sqrt{n})$. Let $G := G_{\delta}$ and G_{Δ} denote the respective graphs. It is well-known that $|E(G_{\delta})| \leq 3n$ and $|E(G_{\Delta})| \leq n$.
- For any point u ∈ S, let deg(u) denote its degree in G; it is well known that deg(u) ≤ 6 for any u ∈ S. For any point u ∈ S, let Γ(u) = {v ∈ S : uv ∈ E(G_δ}; i.e., Γ(u) is the set of vertices adjacent to u in G. For a point u, let x(u) and y(u) denote its x- and y-coordinates respectively.
- ► For a point set S, conv(S) denotes the convex hull of S, while ∂conv(S) denotes the boundary of conv(S).
- ► For a vertex u ∈ H, let u⁻ and u⁺ denote the vertices that precede and succeed u, respectively, in clockwise order.

Let $H \subseteq S$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$; labeled in clockwise order. We say that a vertex $u_i \in H$ has a *flat neighborhood* if the interior angles of the seven vertices u_{i-3} , u_{i-2} , u_{i-1} , u_i , u_{i+1} , u_{i+2} , and u_{i+3} all belong to the interval $(179^\circ, 180^\circ)$. Observe that the number of vertices of $\operatorname{conv}(S)$ that are not flat is O(1).

Let $F \subseteq H$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$ that have flat neighborhoods. Let $D \subseteq H$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$ that are endpoints of some diameter pair. Put |D| = d, f = |F|, and h = |H|; as such, $d \leq h$ and $f \leq h$. The set of points S can be partitioned into three parts as $S = H \cup H' \cup I$, where

- H is the set of extreme vertices of conv(S); an element of H can be in any of the following sets D ∩ F, D \ F, F \ D, or in neither of the two.
- ► H' is the set of points on ∂conv(S) that are not in H (the interior angle of each vertex in H' is 180°).
- ► I is the set of interior vertices, i.e., those that are not on ∂conv(S).

As mentioned earlier, we have $s_{\max} \le d \le h$. Indeed, the endpoints of any diameter pair must be extreme points on the boundary of $\operatorname{conv}(S)$.

If $d \le n/2$, then $s_{\max} \le d \le n/2$ and consequently, $s_{\min}s_{\max} \le \frac{3}{2}n\frac{1}{2}n < n^2$, as required (with room to spare).

 \rightarrow We therefore subsequently assume that $h \ge d \ge n/2$. Recall that $\delta = 1$; and $G := G_{\delta}$, and G_{Δ} is the *diameter* graph.

Lemma

If
$$h \ge n/2$$
, then $\Delta \ge \frac{n}{2\pi}$; in particular $\Delta = \Omega(n)$.

Proof.

Let p = per(conv(S)) Since $\delta = 1$ and $h \ge n/2$, we have $p \ge n/2$. By a standard isoperimetric inequality, $p \le \pi \Delta$. Putting the two inequalities together yields $\Delta \ge \frac{n}{2\pi}$, as required.

Proof setup: a rotating coordinate system used when charging u

For any extreme vertex $u \in H$, let Σ_u be an orthogonal coordinate system whose origin is u, and where the x-axis is a supporting line of $\operatorname{conv}(S)$ incident to u, and S lies in the closed halfplane below the x-axis. If $uu^+ \in G$ and there exists $v \in I$ s.t. $vu, vu^+ \in G$, the x-axis of Σ_u will be chosen as the direction of next side (clockwise), uu^+ ; otherwise, the x-axis of Σ_u will be chosen so that $S \setminus \{u\}$ lies strictly below this line.

Assume that each vertex $u_i \in D \cap F$ of degree 3 in G is charged to some interior vertex $v \in \Gamma(u_i) \cup \Gamma(\Gamma(u_i))$, of degree at most 5; so that the final charge of each interior vertex is at most 6; with each vertex receiving a charge at most 2.

 u_{i-3} u_{i-2} u_{i-1} u_i u_{i+1} u_{i+2} u_{i+3} u_{i+4} u_{i-4}

Lemma

Let $u_i \in D \cap F$ be charged to some $v \in \Gamma(u_i) \cup \Gamma(\Gamma(u_i))$, where v is not necessarily unique. Then no vertex in $H \setminus \{u_{i-3}, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}\}$ can send any charge to v.

An upper bound on s_{\min} (from the same assumption)

Lemma

 $s_{\min} \le 3n - 2d + O(1).$

Proof. Assume that that each element of I carries an initial charge equal to its degree in G (at most 6). Each element of H has degree at most 3; if deg(u) = 4, then the interior angle at u equals 180° , and so u is not an extreme vertex of conv(S). In particular, each element of $D \cap F$ has degree at most 3.

Observe that $|F \cap D| \ge |D| - O(1)$, since there are only O(1) elements of D that do not have flat neighborhoods. Assuming the charging procedure complete, we have

$$2s_{\min} = \sum_{p \in S} \deg(p) \le 3|H \setminus F \cap D| + 2|F \cap D| + 6|S \setminus H|$$

= $3h - 3|F \cap D| + 2|F \cap D| + 6n - 6h$
= $6n - 3h - |F \cap D| \le 6n - 3d - d + O(1)$
= $6n - 4d + O(1)$,

as required.

The resulting product inequality

Using the inequalities on s_{\min} and s_{\max} : $s_{\min} \leq 3n - 2d + O(1)$ and $s_{\max} \leq d$, we obtain

$$s_{\min}s_{\max} \le (3n - 2d + O(1)) d \le \frac{9}{8}n^2 + O(n),$$

as required.

Indeed, setting x = d/n yields the quadratic function f(x) = x(3-2x), which attains its maximum value $\frac{9}{8}$ for $x = \frac{3}{4}$. Thus $(3n-2d)d \leq \frac{9}{8}n^2$, and we also have O(1)d = O(d) = O(n); adding these two inequalities yields the one claimed above.

Charging scheme

Let u_1, \ldots, u_h (where $u_{h+1} = u_1$) be the extreme vertices of conv(S) in clockwise order; they are processed one by one in this order (pairs of adjacent vertices of H corresponding to edges of G are processed at the same time); equivalently, S is rotated counterclockwise at each step so as the current vertex processed is the highest in the current step.

When handling the current vertex u_i (of deg. 3), or two consecutive vertices u_i, u_{i+1} that belong to a unit equilateral triangle, we use the coordinate system Σ_{u_i} . We distinguish several cases, depending on whether (i) the *middle* edge of unit length, say, $u_i v_i$, connects u_i with an interior vertex of degree 6 or less; and (ii) v_i is connected to one or two vertices on $\partial \operatorname{conv}(S)$.

The following charging rules are observed.

- 1. Only *middle* edges are charged (each to one or more interior vertices).
- 2. Charging amounts can be 1/2 or 1.
- Handling u_i (distribution of the unit charge on the middle edge incident to u_i) can only make charges to points at distance at most 2 in G; i.e., it can only affect vertices in Γ(u_i) ∪ Γ(Γ(u_i)).

Middle edges are drawn in bold.

(a) If $u_i v_i$ is the unique unit edge incident to v_i connecting v_i with an extreme vertex, S is rotated counterclockwise, so that u_i is the highest vertex in S; see Fig. (left); the angle of rotation is set (arbitrarily) so this condition holds.

(b) If u_iv_i and $u_{i+1}v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} (i.e., $u_iu_{i+1} \in G$), S is rotated counterclockwise, so that u_iu_{i+1} is horizontal and S is contained in the closed halfplane below u_iu_{i+1} ; see Fig. (middle).

(c) If $u_i v$ and $u_{i+1}v$ are unit edge incident to v connecting v with two non-adjacent extreme vertices u_i and u_{i+1} (i.e., $|u_i u_{i+1}| > 1$), then $u_i v$ and $u_{i+1}v$ are *not* middle edges, and so we are in the situation described in (a) or (b); see Fig. (right), where middle edges $u_i v_i$ and $u_{i+1}v_{i+1}$ will be the ones charged to interior vertices.

Properties

The following properties can be proven (as part of the charging scheme analysis).

- 1. A vertex of degree 5 receives at most 1/2 charge from the left, and at most 1/2 charge from the right; or receives at most one unit of charge otherwise.
- 2. A vertex of degree at most 4 receives at most one unit of charge from the left, and at most one unit of charge from the right.
- 3. Write $u = u_i$. Consider the coordinate system Σ_u , and the rectangle $R_u = [x(u) 7/4, x(u) + 7/4] \times [y(u) 2, y(u)]$. By the charging scheme, u can only send charges to interior vertices contained in R_u .

Case 1: $\deg(v_i) = 6$, and $u_i v_i$ is the unique unit edge incident to v_i connecting v_i with an extreme vertex. Let $a, b \in \Gamma(u_i) \cap \Gamma(v_i)$ be the other two common neighbors of u_i and v_i on the left and right, respectively. Note that $\deg(a) \leq 5$, and similarly, $\deg(b) \leq 5$; indeed, if $\deg(a) = 6$ (or $\deg(b) = 6$), one element in $\Gamma(a)$ (resp., $\Gamma(b)$) would lie strictly above u_i , a contradiction. Distribute the unit charge on edge $u_i v_i$ into two equal parts: 1/2 to the left interior vertex a and 1/2 to the right interior vertex b. Observe that $a, b \in R_{u_i}$. It will subsequently shown that the charge received by a (or b) from other nearby vertices on $\partial \operatorname{conv}(S)$ is at most 1/2.

Case 2: deg $(v_i) = 6$, where $u_i v_i$ and $u_{i+1} v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . Note that $deg(a) \leq 5$ and $deg(b) \leq 5$; indeed, if say, deg(a) = 6(or deg(b) = 6), the interior angle at u_i (resp., at u_{i+1}) would be 180° , a contradiction, since we have assumed that $u_i, u_{i+1} \in D$. We further identify other vertices of low degree that will be charged. Let $w_i, w_{i+1} \in \Gamma(v_i)$ be the two neighbors of v_i below it. Our charging scheme is symmetric: we distribute the unit charge of edge $u_{i+1}v_i$ to b and some other interior vertex (the distribution of the unit charge of edge $u_i v_i$ is analogous, involving a and some other interior vertex).

Case 2: $\deg(v_i) = 6$, where $u_i v_i$ and $u_{i+1}v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . If $\deg(w_{i+1}) \leq 5$, distribute the unit charge on edge $u_{i+1}v_i$ into two equal parts: 1/2 to interior vertex b and 1/2 to the interior vertex w_{i+1} . We subsequently assume that $\deg(w_{i+1}) = 6$. Let $w_{i+2} \in \Gamma(b) \cap \Gamma(w_{i+1})$ be the interior vertex on the line $\ell(w_i, w_{i+1})$ to the right. If $\deg(w_{i+2}) \leq 5$, distribute the unit charge on edge $u_{i+1}v_i$ into two equal parts: 1/2 to interior vertex b and 1/2 to the interior vertex w_{i+2} . We subsequently assume that $\deg(w_{i+2}) = 6$,

. .

Case 2: $\deg(v_i) = 6$, where $u_i v_i$ and $u_{i+1} v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . We subsequently assume that $\deg(w_{i+2}) = 6$. Let $d \in \Gamma(b) \cap \Gamma(w_{i+2})$ be the interior vertex on the line $\ell(v_i, b)$ to the right. Observe that $\deg(d) \leq 4$: since each element of $\Gamma(d) \setminus \{b, w_{i+2}\}$ must lie strictly below the line $\ell(w_{i+2}, d)$, there are at most two such vertices. In this last case, distribute the unit charge on edge $u_{i+1}v_i$ into two equal parts: 1/2 to the interior vertex b and 1/2 to the interior vertex d. Observe that $b, d, w_{i+1}, w_{i+2} \in R_{u_{i+1}}$, and similarly that $a, c, w_i, w_{i-1} \in R_{u_i}$.

Case 3: $deg(v_i) \leq 5$, and $u_i v_i$ is the unique unit edge incident to v_i connecting v_i with an extreme vertex. If $\deg(v_i) \leq 4$, v_i receives a unit charge. If $deg(v_i) = 5$, let a and b be the two neighbors of v_i left and right of u_i , respectively. Let high(a, b)denote the element of $\{a, b\}$ which is the highest (i.e., closest to the x-axis of Σ_{u_i}). Observe that high(a, b) has degree at most 5; since otherwise, the y-coordinate of one of its neighbors (w.r.t. this coordinate system) would be non-negative, a contradiction. Further observe that $high(a, b)u_i$ is an edge in G; since otherwise, u_i would not have degree 3 or its interior angle would be 180° , either of which is a a contradiction. Distribute the unit charge on edge $u_i v_i$ into two equal parts: 1/2 unit to v_i and 1/2 unit to high(a, b).

Case 4: $\deg(v_i) \leq 5$, where $u_i v_i$ and $u_{i+1} v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . If $\deg(v_i) \leq 4$, charge $u_i v_i$ and $u_{i+1} v_i$ to v_i ; note that no other charge will be directed to this vertex. Assume now that $\deg(v_i) = 5$ and let w_i denote the vertex in $\Gamma(v_i)$ below v_i that is farthest from the edge $u_i u_{i+1}$.

If $deg(w_i) \leq 5$, distribute the two units of charge for edges $u_i v_i$ and $u_{i+1}v_i$ into two equal parts: one unit to v_i and one unit to w_i .

Left: $\deg(w_i) = 5$. Right: $\deg(w_i) = 6$.

Case 4: $\deg(v_i) \leq 5$, where $u_i v_i$ and $u_{i+1}v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . Assume now that $\deg(w_i) = 6$. We claim that $\deg(a) \leq 5$ and $\deg(b) \leq 5$. We may assume that $\angle av_i u_i \geq 90^\circ \geq \angle bv_i u_{i+1}$. If $\deg(a) = 6$, let v_{i-1} be the next counterclockwise vertex after v_i in $\Gamma(a)$. Since the triangle $\triangle av_{i-1}v_i$ is equilateral, this implies that $v_{i-1}v_i$ is yet another edge in G, which is in contradiction with the assumption that $\deg(v_i) = 5$.

Left: $\deg(w_i) = 5$. Right: $\deg(w_i) = 6$.

Case 4: $\deg(v_i) \leq 5$, where $u_i v_i$ and $u_{i+1} v_i$ are unit edge incident to v_i connecting v_i with two adjacent extreme vertices u_i and u_{i+1} . If $\deg(b) = 6$, then bu_{i+1} is an edge in G, thus $v_i b \parallel u_i u_{i+1}$ and so $v_i b$ is horizontal. Let c be the next clockwise vertex after u_{i+1} in $\Gamma(b)$. Then $u_{i+1}c$ is also horizontal, thus $c \in \partial \operatorname{conv}(S)$, which implies that the interior angle at u_{i+1} is 180° , which is a contradiction (we have assumed that $u_i, u_{i+1} \in D$).

Distribute the two unit charges for edges u_iv_i and $u_{i+1}v_i$ as one unit to v_i , 1/2 unit to a and 1/2 unit to b.

Left: $\deg(w_i) = 5$. Right: $\deg(w_i) = 6$.

Further questions

- 1. What can be said about the maximum value of the product $s_{\min}s_{\max}$ in higher dimensions?
- 2. For the plane: Erdős and Pach (1990) also asked what is the best possible value of the constant c in the sum inequality below:

$$s_{\min} + s_{\max} \le 3n - c\sqrt{n} + o(\sqrt{n}).$$

THE END