A Product Inequality for Extreme Distances

Adrian Dumitrescu

University of Wisconsin-Milwaukee

A Product Inequality

Let p_{1}, \ldots, p_{n} be n distinct points in the plane, and assume that the minimum inter-point distance occurs $s_{\min }$ times, while the maximum inter-point distance occurs $s_{\text {max }}$ times.

Erdős and Pach (1990) asked for a proof or disproof of the following product inequality:

$$
s_{\min } s_{\max } \leq \frac{9}{8} n^{2}+o\left(n^{2}\right)
$$

Here it is shown that $s_{\min } s_{\max } \leq \frac{9}{8} n^{2}+O(n)$.

A Product Inequality

The authors also remarked that this inequality, if true, essentially cannot be improved; and this would follow from a construction of E. Makai Jr. (not discussed in their paper).

An n-element point set with $\frac{3}{4} n$ points on the convex hull and $\frac{1}{4} n$ interior points. $\frac{3}{4} n-1$ boundary points are evenly distributed on a circular arc centered at the leftmost point. $s_{\min }=\frac{3}{4} n+\frac{3}{4} n-$ $O(\sqrt{n})=\frac{3}{2} n-O(\sqrt{n})$, and $s_{\max }=\frac{3}{4} n$ (provided that the circular arc subtends an angle of 60°), and so $s_{\min } s_{\max }=\frac{9}{8} n^{2}-O(n \sqrt{n})$. The $m=\frac{1}{4} n$ interior points make a section of a unit triangular lattice with $\lfloor 3 m-\sqrt{12 m-3}\rfloor$ unit distances, where the minimum inter-point distance is equal to 1 .

Preliminaries

- Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of n distinct points in the plane. Given two points p and q, let $\ell(p, q)$ denote the line determined by p and q. Let δ and Δ denote the minimum and maximum pairwise distance of S, respectively. We may assume that $\delta=1$; a standard packing argument yields $\Delta=\Omega(\sqrt{n})$. Let $G:=G_{\delta}$ and G_{Δ} denote the respective graphs. It is well-known that $\left|E\left(G_{\delta}\right)\right| \leq 3 n$ and $\left|E\left(G_{\Delta}\right)\right| \leq n$.
- For any point $u \in S$, let $\operatorname{deg}(u)$ denote its degree in G; it is well known that $\operatorname{deg}(u) \leq 6$ for any $u \in S$. For any point $u \in S$, let $\Gamma(u)=\left\{v \in S: u v \in E\left(G_{\delta}\right\}\right.$; i.e., $\Gamma(u)$ is the set of vertices adjacent to u in G. For a point u, let $x(u)$ and $y(u)$ denote its x - and y-coordinates respectively.
- For a point set $S, \operatorname{conv}(S)$ denotes the convex hull of S, while $\partial \operatorname{conv}(S)$ denotes the boundary of $\operatorname{conv}(S)$.
- For a vertex $u \in H$, let u^{-}and u^{+}denote the vertices that precede and succeed u, respectively, in clockwise order.

Proof setup

Let $H \subseteq S$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$; labeled in clockwise order. We say that a vertex $u_{i} \in H$ has a flat neighborhood if the interior angles of the seven vertices $u_{i-3}, u_{i-2}, u_{i-1}, u_{i}$, u_{i+1}, u_{i+2}, and u_{i+3} all belong to the interval $\left(179^{\circ}, 180^{\circ}\right)$. Observe that the number of vertices of $\operatorname{conv}(S)$ that are not flat is $O(1)$.

The flat neighborhood of u_{i} and a diameter pair $\left(u_{i}, u_{i}^{\prime}\right)$.

Proof setup

Let $F \subseteq H$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$ that have flat neighborhoods. Let $D \subseteq H$ denote the set of (extreme) vertices of $\operatorname{conv}(S)$ that are endpoints of some diameter pair. Put $|D|=d, f=|F|$, and $h=|H|$; as such, $d \leq h$ and $f \leq h$.
The set of points S can be partitioned into three parts as $S=$ $H \cup H^{\prime} \cup I$, where

- H is the set of extreme vertices of $\operatorname{conv}(S)$; an element of H can be in any of the following sets $D \cap F, D \backslash F, F \backslash D$, or in neither of the two.
- H^{\prime} is the set of points on $\partial \operatorname{conv}(S)$ that are not in H (the interior angle of each vertex in H^{\prime} is 180°).
- I is the set of interior vertices, i.e., those that are not on $\partial \operatorname{conv}(S)$.

Proof setup

As mentioned earlier, we have $s_{\max } \leq d \leq h$. Indeed, the endpoints of any diameter pair must be extreme points on the boundary of $\operatorname{conv}(S)$.

If $d \leq n / 2$, then $s_{\text {max }} \leq d \leq n / 2$ and consequently, $s_{\min } s_{\max } \leq$ $\frac{3}{2} n \frac{1}{2} n<n^{2}$, as required (with room to spare).
\rightarrow We therefore subsequently assume that $h \geq d \geq n / 2$.
Recall that $\delta=1$; and $G:=G_{\delta}$, and G_{Δ} is the diameter graph.
Lemma
If $h \geq n / 2$, then $\Delta \geq \frac{n}{2 \pi}$; in particular $\Delta=\Omega(n)$.
Proof.
Let $p=\operatorname{per}(\operatorname{conv}(S))$ Since $\delta=1$ and $h \geq n / 2$, we have $p \geq n / 2$.
By a standard isoperimetric inequality, $p \leq \pi \Delta$. Putting the two inequalities together yields $\Delta \geq \frac{n}{2 \pi}$, as required.

Proof setup: a rotating coordinate system used when

 charging uFor any extreme vertex $u \in H$, let Σ_{u} be an orthogonal coordinate system whose origin is u, and where the x-axis is a supporting line of $\operatorname{conv}(S)$ incident to u, and S lies in the closed halfplane below the x-axis. If $u u^{+} \in G$ and there exists $v \in I$ s.t. $v u, v u^{+} \in G$, the x-axis of Σ_{u} will be chosen as the direction of next side (clockwise), $\overrightarrow{u u^{+}}$; otherwise, the x-axis of Σ_{u} will be chosen so that $S \backslash\{u\}$ lies strictly below this line.

Proof setup

Assume that each vertex $u_{i} \in D \cap F$ of degree 3 in G is charged to some interior vertex $v \in \Gamma\left(u_{i}\right) \cup \Gamma\left(\Gamma\left(u_{i}\right)\right)$, of degree at most 5 ; so that the final charge of each interior vertex is at most 6 ; with each vertex receiving a charge at most 2 .

Lemma

Let $u_{i} \in D \cap F$ be charged to some $v \in \Gamma\left(u_{i}\right) \cup \Gamma\left(\Gamma\left(u_{i}\right)\right)$, where v is not necessarily unique. Then no vertex in
$H \backslash\left\{u_{i-3}, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}\right\}$ can send any charge to v.

An upper bound on $s_{\min }$ (from the same assumption)

Lemma

$s_{\text {min }} \leq 3 n-2 d+O(1)$.
Proof. Assume that that each element of I carries an initial charge equal to its degree in G (at most 6). Each element of H has degree at most 3 ; if $\operatorname{deg}(u)=4$, then the interior angle at u equals 180°, and so u is not an extreme vertex of $\operatorname{conv}(S)$. In particular, each element of $D \cap F$ has degree at most 3 .
Observe that $|F \cap D| \geq|D|-O(1)$, since there are only $O(1)$ elements of D that do not have flat neighborhoods. Assuming the charging procedure complete, we have

$$
\begin{aligned}
2 s_{\min } & =\sum_{p \in S} \operatorname{deg}(p) \leq 3|H \backslash F \cap D|+2|F \cap D|+6|S \backslash H| \\
& =3 h-3|F \cap D|+2|F \cap D|+6 n-6 h \\
& =6 n-3 h-|F \cap D| \leq 6 n-3 d-d+O(1) \\
& =6 n-4 d+O(1),
\end{aligned}
$$

as required.

The resulting product inequality

Using the inequalities on $s_{\text {min }}$ and $s_{\text {max }}$:
$s_{\text {min }} \leq 3 n-2 d+O(1)$ and $s_{\max } \leq d$, we obtain

$$
s_{\min } s_{\max } \leq(3 n-2 d+O(1)) d \leq \frac{9}{8} n^{2}+O(n)
$$

as required.
Indeed, setting $x=d / n$ yields the quadratic function $f(x)=x(3-2 x)$, which attains its maximum value $\frac{9}{8}$ for $x=\frac{3}{4}$.
Thus $(3 n-2 d) d \leq \frac{9}{8} n^{2}$, and we also have
$O(1) d=O(d)=O(n)$;
adding these two inequalities yields the one claimed above.

Charging scheme

Let u_{1}, \ldots, u_{h} (where $u_{h+1}=u_{1}$) be the extreme vertices of $\operatorname{conv}(S)$ in clockwise order; they are processed one by one in this order (pairs of adjacent vertices of H corresponding to edges of G are processed at the same time); equivalently, S is rotated counterclockwise at each step so as the current vertex processed is the highest in the current step.

Charging rules

When handling the current vertex u_{i} (of deg. 3), or two consecutive vertices u_{i}, u_{i+1} that belong to a unit equilateral triangle, we use the coordinate system $\Sigma_{u_{i}}$. We distinguish several cases, depending on whether (i) the middle edge of unit length, say, $u_{i} v_{i}$, connects u_{i} with an interior vertex of degree 6 or less; and (ii) v_{i} is connected to one or two vertices on $\partial \operatorname{conv}(S)$.

Charging rules

The following charging rules are observed.

1. Only middle edges are charged (each to one or more interior vertices).
2. Charging amounts can be $1 / 2$ or 1 .
3. Handling u_{i} (distribution of the unit charge on the middle edge incident to u_{i}) can only make charges to points at distance at most 2 in G; i.e., it can only affect vertices in $\Gamma\left(u_{i}\right) \cup \Gamma\left(\Gamma\left(u_{i}\right)\right)$.

Middle edges are drawn in bold.

Charging rules

(a) If $u_{i} v_{i}$ is the unique unit edge incident to v_{i} connecting v_{i} with an extreme vertex, S is rotated counterclockwise, so that u_{i} is the highest vertex in S; see Fig. (left); the angle of rotation is set (arbitrarily) so this condition holds.

Charging rules

(b) If $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1} (i.e., $u_{i} u_{i+1} \in G$), S is rotated counterclockwise, so that $u_{i} u_{i+1}$ is horizontal and S is contained in the closed halfplane below $u_{i} u_{i+1}$; see Fig. (middle).

Charging rules

(c) If $u_{i} v$ and $u_{i+1} v$ are unit edge incident to v connecting v with two non-adjacent extreme vertices u_{i} and u_{i+1} (i.e., $\left|u_{i} u_{i+1}\right|>1$), then $u_{i} v$ and $u_{i+1} v$ are not middle edges, and so we are in the situation described in (a) or (b); see Fig. (right), where middle edges $u_{i} v_{i}$ and $u_{i+1} v_{i+1}$ will be the ones charged to interior vertices.

Properties

The following properties can be proven (as part of the charging scheme analysis).

1. A vertex of degree 5 receives at most $1 / 2$ charge from the left, and at most $1 / 2$ charge from the right; or receives at most one unit of charge otherwise.
2. A vertex of degree at most 4 receives at most one unit of charge from the left, and at most one unit of charge from the right.
3. Write $u=u_{i}$. Consider the coordinate system Σ_{u}, and the rectangle $R_{u}=[x(u)-7 / 4, x(u)+7 / 4] \times[y(u)-2, y(u)]$. By the charging scheme, u can only send charges to interior vertices contained in R_{u}.

Case 1: $\operatorname{deg}\left(v_{i}\right)=6$, and $u_{i} v_{i}$ is the unique unit edge incident to v_{i} connecting v_{i} with an extreme vertex. Let $a, b \in \Gamma\left(u_{i}\right) \cap \Gamma\left(v_{i}\right)$ be the other two common neighbors of u_{i} and v_{i} on the left and right, respectively. Note that $\operatorname{deg}(a) \leq 5$, and similarly, $\operatorname{deg}(b) \leq 5$; indeed, if $\operatorname{deg}(a)=6$ (or $\operatorname{deg}(b)=6$), one element in $\Gamma(a)$ (resp., $\Gamma(b))$ would lie strictly above u_{i}, a contradiction. Distribute the unit charge on edge $u_{i} v_{i}$ into two equal parts: $1 / 2$ to the left interior vertex a and $1 / 2$ to the right interior vertex b. Observe that $a, b \in$ $R_{u_{i}}$. It will subsequently shown that the charge received by a (or b) from other nearby vertices on $\partial \operatorname{conv}(S)$ is at most $1 / 2$.

Case 2: $\operatorname{deg}\left(v_{i}\right)=6$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. Note that $\operatorname{deg}(a) \leq 5$ and $\operatorname{deg}(b) \leq 5$; indeed, if say, $\operatorname{deg}(a)=6$ (or $\operatorname{deg}(b)=6$), the interior angle at u_{i} (resp., at u_{i+1}) would be 180°, a contradiction, since we have assumed that $u_{i}, u_{i+1} \in D$.
We further identify other vertices of low degree that will be charged. Let $w_{i}, w_{i+1} \in \Gamma\left(v_{i}\right)$ be the two neighbors of v_{i} below it. Our charging scheme is symmetric: we distribute the unit charge of edge $u_{i+1} v_{i}$ to b and some other interior vertex (the distribution of the unit charge of edge $u_{i} v_{i}$ is analogous, involving a and some other interior vertex).

Case 2: $\operatorname{deg}\left(v_{i}\right)=6$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. If $\operatorname{deg}\left(w_{i+1}\right) \leq 5$, distribute the unit charge on edge $u_{i+1} v_{i}$ into two equal parts: $1 / 2$ to interior vertex b and $1 / 2$ to the interior vertex w_{i+1}. We subsequently assume that $\operatorname{deg}\left(w_{i+1}\right)=6$. Let $w_{i+2} \in \Gamma(b) \cap \Gamma\left(w_{i+1}\right)$ be the interior vertex on the line $\ell\left(w_{i}, w_{i+1}\right)$ to the right. If $\operatorname{deg}\left(w_{i+2}\right) \leq 5$, distribute the unit charge on edge $u_{i+1} v_{i}$ into two equal parts: $1 / 2$ to interior vertex b and $1 / 2$ to the interior vertex w_{i+2}. We subsequently assume that $\operatorname{deg}\left(w_{i+2}\right)=6$,

Case 2: $\operatorname{deg}\left(v_{i}\right)=6$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. We subsequently assume that $\operatorname{deg}\left(w_{i+2}\right)=6$. Let $d \in \Gamma(b) \cap$ $\Gamma\left(w_{i+2}\right)$ be the interior vertex on the line $\ell\left(v_{i}, b\right)$ to the right. Observe that $\operatorname{deg}(d) \leq 4$: since each element of $\Gamma(d) \backslash\left\{b, w_{i+2}\right\}$ must lie strictly below the line $\ell\left(w_{i+2}, d\right)$, there are at most two such vertices. In this last case, distribute the unit charge on edge $u_{i+1} v_{i}$ into two equal parts: $1 / 2$ to the interior vertex b and $1 / 2$ to the interior vertex d. Observe that $b, d, w_{i+1}, w_{i+2} \in R_{u_{i+1}}$, and similarly that $a, c, w_{i}, w_{i-1} \in R_{u_{i}}$.

Case 3: $\operatorname{deg}\left(v_{i}\right) \leq 5$, and $u_{i} v_{i}$ is the unique unit edge incident to v_{i} connecting v_{i} with an extreme vertex. If $\operatorname{deg}\left(v_{i}\right) \leq 4, v_{i}$ receives a unit charge. If $\operatorname{deg}\left(v_{i}\right)=5$, let a and b be the two neighbors of v_{i} left and right of u_{i}, respectively. Let $\operatorname{high}(a, b)$ denote the element of $\{a, b\}$ which is the highest (i.e., closest to the x-axis of $\Sigma_{u_{i}}$). Observe that $\operatorname{high}(a, b)$ has degree at most 5 ; since otherwise, the y-coordinate of one of its neighbors (w.r.t. this coordinate system) would be non-negative, a contradiction. Further observe that $\operatorname{high}(a, b) u_{i}$ is an edge in G; since otherwise, u_{i} would not have degree 3 or its interior angle would be 180°, either of which is a a contradiction. Distribute the unit charge on edge $u_{i} v_{i}$ into two equal parts: $1 / 2$ unit to v_{i} and $1 / 2$ unit to $\operatorname{high}(a, b)$.

Case 4: $\operatorname{deg}\left(v_{i}\right) \leq 5$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. If $\operatorname{deg}\left(v_{i}\right) \leq 4$, charge $u_{i} v_{i}$ and $u_{i+1} v_{i}$ to v_{i}; note that no other charge will be directed to this vertex. Assume now that $\operatorname{deg}\left(v_{i}\right)=5$ and let w_{i} denote the vertex in $\Gamma\left(v_{i}\right)$ below v_{i} that is farthest from the edge $u_{i} u_{i+1}$.
If $\operatorname{deg}\left(w_{i}\right) \leq 5$, distribute the two units of charge for edges $u_{i} v_{i}$ and $u_{i+1} v_{i}$ into two equal parts: one unit to v_{i} and one unit to w_{i}.

Left: $\operatorname{deg}\left(w_{i}\right)=5$. Right: $\operatorname{deg}\left(w_{i}\right)=6$.

Case 4: $\operatorname{deg}\left(v_{i}\right) \leq 5$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. Assume now that $\operatorname{deg}\left(w_{i}\right)=6$. We claim that $\operatorname{deg}(a) \leq 5$ and $\operatorname{deg}(b) \leq 5$. We may assume that $\angle a v_{i} u_{i} \geq 90^{\circ} \geq \angle b v_{i} u_{i+1}$.
If $\operatorname{deg}(a)=6$, let v_{i-1} be the next counterclockwise vertex after v_{i} in $\Gamma(a)$. Since the triangle $\Delta a v_{i-1} v_{i}$ is equilateral, this implies that $v_{i-1} v_{i}$ is yet another edge in G, which is in contradiction with the assumption that $\operatorname{deg}\left(v_{i}\right)=5$.

Left: $\operatorname{deg}\left(w_{i}\right)=5$. Right: $\operatorname{deg}\left(w_{i}\right)=6$.

Case 4: $\operatorname{deg}\left(v_{i}\right) \leq 5$, where $u_{i} v_{i}$ and $u_{i+1} v_{i}$ are unit edge incident to v_{i} connecting v_{i} with two adjacent extreme vertices u_{i} and u_{i+1}. If $\operatorname{deg}(b)=6$, then $b u_{i+1}$ is an edge in G, thus $v_{i} b \| u_{i} u_{i+1}$ and so $v_{i} b$ is horizontal. Let c be the next clockwise vertex after u_{i+1} in $\Gamma(b)$. Then $u_{i+1} c$ is also horizontal, thus $c \in \partial \operatorname{conv}(S)$, which implies that the interior angle at u_{i+1} is 180°, which is a contradiction (we have assumed that $u_{i}, u_{i+1} \in D$).
Distribute the two unit charges for edges $u_{i} v_{i}$ and $u_{i+1} v_{i}$ as one unit to $v_{i}, 1 / 2$ unit to a and $1 / 2$ unit to b.

Left: $\operatorname{deg}\left(w_{i}\right)=5$. Right: $\operatorname{deg}\left(w_{i}\right)=6$.

Further questions

1. What can be said about the maximum value of the product $s_{\text {min }} s_{\text {max }}$ in higher dimensions?
2. For the plane: Erdős and Pach (1990) also asked what is the best possible value of the constant c in the sum inequality below:

$$
s_{\min }+s_{\max } \leq 3 n-c \sqrt{n}+o(\sqrt{n})
$$

THE END

