Topological Drawings of Complete Bipartite Graphs

Jean Cardinal (ULB, Brussels)

Joint work with Stefan Felsner (TU Berlin)

Topological Drawings of Graphs

• vertices \leftrightarrow points

 \blacksquare edges \leftrightarrow (well-behaved) continuous curves

Simple Topological Drawings of Graphs

- vertices \leftrightarrow points
- edges ↔ (well-behaved) continuous curves crossing pairwise at most once

Simple Topological Drawings of **Complete** Graphs

Rotation system ↔ crossing edges (Pach-Tóth 06)

Abstract Topological Graphs

G = (V, E, C), with C ⊆ (^E₂) pairs of crossing edges
 Simple realizability of complete AT-graphs decidable in polynomial time (Kyncl 11/15)

Topological Drawings of Complete **Bipartite** Graphs

Turán's brick factory problem Zarankiewicz's conjecture

Outer Drawings of $K_{k,n}$

- previous requirement of simple topological drawings and
- 2 the *k* vertices of one side of the bipartition lie on the outer boundary of the drawing.

Combinatorics of such drawings? Relevant combinatorial description and realizability checking?

Outer drawings of $K_{3,5}$ with rotation system (12345, 21435, 13254)

A first simple case

k = 2 and uniform rotation system

Encoding of $K_{2,2}$ subdrawings

Example

Consistency constraints

Triples are not enough

Only legal triples, but not realizable:

Drawings of K_{2,4} yield legal quadruples

Triple and quadruple rules

Consistency for k = 2 and uniform rotation system

Theorem

Triple and quadruple consistency is sufficient for the existence of outer drawings of $K_{2,n}$ with uniform rotation system.

Structure

 Bijection with separable permutations = {2413, 3142}-avoiding permutations : triple rule <> permutation quadruple rule <> pattern avoidance

Proof: consider the *A*, *B* matrices as matrices of inversions

Arbitrary k and arbitrary rotation system

- Generalization of the triple and quadruple rules
- Consider subdrawings of K_{3,2} as well
- Sufficiency

Encoding of $K_{2,2}$ subdrawings

Triple rule

17 drawings of K_{2,3} – legal triples ■ 15 triples of the form

with
$$Y \in \{X, Z\}$$

2 additional triples

Quadruple rule

Drawings of K_{3,2}

Drawings of $K_{3,2}$: projections

Consistency for arbitrary k

Theorem

Consistency on subdrawings of $K_{2,3}$ (triples), $K_{2,4}$ (quadruples), and $K_{3,2}$ is sufficient for the existence of outer drawings of $K_{k,n}$.

Corollary

Outer realizability of complete bipartite AT-graphs is in P

Proof steps

- k = 2 and arbitrary rotation system
- k = 3 and arbitrary rotation system : case analysis
- Generalize from k = 3 to arbitrary k

Rotation systems of **extendable** (aka **pseudolinear**) outer drawings ↔ suballowable sequences (Asinowski 2008)

Thank you!

arXiv:1608.08324 To appear in *Journal of Computational Geometry* (JoCG)