Topological Drawings of Complete Bipartite Graphs

Jean Cardinal (ULB, Brussels)

Joint work with Stefan Felsner (TU Berlin)

Topological Drawings of Graphs

- vertices \leftrightarrow points

■ edges \leftrightarrow (well-behaved) continuous curves

Simple Topological Drawings of Graphs

■ vertices \leftrightarrow points
■ edges \leftrightarrow (well-behaved) continuous curves crossing pairwise at most once

Simple Topological Drawings of Complete Graphs

Rotation system \leftrightarrow crossing edges (Pach-Tóth 06)

Abstract Topological Graphs

- $G=(V, E, C)$, with $C \subseteq\binom{E}{2}$ pairs of crossing edges
- Simple realizability of complete AT-graphs decidable in polynomial time (Kyncl 11/15)

Topological Drawings of Complete Bipartite Graphs

■ Turán's brick factory problem
■ Zarankiewicz's conjecture

Outer Drawings of $K_{k, n}$

11 previous requirement of simple topological drawings and
2 the k vertices of one side of the bipartition lie on the outer boundary of the drawing.
Combinatorics of such drawings? Relevant combinatorial description and realizability checking?

Examples

Outer drawings of $K_{3,5}$ with rotation system (12345, 21435, 13254)

A first simple case

$k=2$ and uniform rotation system

Encoding of $K_{2,2}$ subdrawings

Example

B	B	B		
2	B	A		
	3	A		
				4

Consistency constraints

A	B
b	A
c	

Triples are not enough

Only legal triples, but not realizable:

Drawings of $K_{2,4}$ yield legal quadruples

Triple and quadruple rules

Consistency for $k=2$ and uniform rotation system

Theorem

Triple and quadruple consistency is sufficient for the existence of outer drawings of $K_{2, n}$ with uniform rotation system.

Structure

- Bijection with separable permutations = $\{2413,3142\}$-avoiding permutations :
triple rule \Leftrightarrow permutation quadruple rule \Leftrightarrow pattern avoidance
Proof: consider the A, B matrices as matrices of inversions

Arbitrary k and arbitrary rotation system

- Generalization of the triple and quadruple rules
- Consider subdrawings of $K_{3,2}$ as well

■ Sufficiency

Encoding of $K_{2,2}$ subdrawings

Triple rule

17 drawings of $K_{2,3}$ - legal triples

- 15 triples of the form

X	Y
b	Z
c	

with $Y \in\{X, Z\}$

- 2 additional triples

Quadruple rule

Drawings of $K_{3,2}$

Drawings of $K_{3,2}$: projections

	B_{1}	B_{2}	B_{3}	W_{1}	W_{2}	W_{3}
T_{1}	B	A	A	A	N	N
T_{2}	A	B	A	N	A	N
T_{3}	A	A	B	N	N	A

Consistency for arbitrary k

Theorem

Consistency on subdrawings of $K_{2,3}$ (triples), $K_{2,4}$ (quadruples), and $K_{3,2}$ is sufficient for the existence of outer drawings of $K_{k, n}$.

Corollary

Outer realizability of complete bipartite AT-graphs is in P

Proof steps

- $k=2$ and arbitrary rotation system
- $k=3$ and arbitrary rotation system : case analysis
- Generalize from $k=3$ to arbitrary k

Other results

Rotation systems of extendable (aka pseudolinear) outer drawings
\leftrightarrow
suballowable sequences (Asinowski 2008)

Thank you!

arXiv:1608.08324
To appear in Journal of Computational Geometry (JoCG)

