
7.2 Epsilon-Approximations via Chaining

Our main theorem will be the following.

Theorem 7.3. Let (X,F) be a set system with VC-dim(F) ≤ d, and ε > 0 a given parameter.
Then a uniform random sample A of X of size O

(
d
ε2

)
is an ε-approximation for F , with

constant probability.

Throughout the rest of this chapter, we will fix a set system (X,F) with |X| = n and
VC-dim(F) ≤ d, and a parameter ε > 0.

Recall ε-approximations:

Definition 7.1. Given a set system (X,F), an ε-approximation is a subset A ⊆ X such that
for any set S ∈ F , we have ∣∣∣∣ |S||X| − |S ∩ A||A|

∣∣∣∣ ≤ ε.

For the moment we treat the size of A as a parameter t, whose value will then be set during
the proof as needed. There are three additional ideas in the proof, which we outline before
we present the complete proof.

1. GETTING INDEPENDENCE FROM n.

To bound the failure probability of A, we will bound the probability of A being a failure
for a fixed set S ∈ F , and then use the union bound over all sets of F . That brings in the
dependence on log |F| = O (d log n). An easy ‘pre-processing’ step allows us to replace n by
a function of 1

ε
: we will first take a larger random sample A′ of size O

(
d
ε2

log 1
ε

)
uniformly

from (X,F). As seen before, with constant probability, A′ is a ε
2
-approximation for (X,F).

The next lemma shows that if we now compute an ε
2
-approximation for (A′,F|A′), it will

be an ε-approximation for (X,F).

Lemma 7.2. Given a set system (X,F), let A ⊆ X be an ε1-approximation for F . Further let
B ⊆ A be an ε2-approximation for (A,F|A). Then B is a (ε1 + ε2)-approximation for (X,F).

Proof. Fix any S ∈ F . Then

A is an ε1-approximation for (X,F) =⇒ |A ∩ S| =
|S| · |A|
|X| ± ε1 · |A|.

B is an ε2-approximation for (A,F|A) =⇒ |B ∩ (S ∩ A) | =
|S ∩ A| · |B|
|A| ± ε2 · |B|.
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As B ⊆ A, we have |B ∩ (S ∩ A) | = |B ∩ S|, and so

|B ∩ S| = |B ∩ (S ∩ A) | =

(
|S|·|A|
|X| ± ε1 · |A|

)
· |B|

|A| ± ε2 · |B|.

=
|S| · |B|
|X| ± (ε1 + ε2) · |B|.

Thus, we can take a sample A′ and then work with (A′,F|A′) instead of (X,F). This allows
us to assume that |X| = O

(
d
ε2

log 1
ε

)
, which implies that |F| = O

((
d
ε2

log 1
ε

)d).

Next, we get rid of the ‘log’ term entirely.

2. TAKING CARE OF SMALL-SIZED SETS OF F .

From the definition of ε-approximations, for each S ∈ F , we want

|A ∩ S| = |S| · t
n
± εt.

As E [|A ∩ S|] = |S|·t
n

, A fails for S if the random variable |A ∩ S| is greater than εt away
from its expectation.

We first recall Chernoff’s bound:

Theorem (Chernoff’s bound). Given n independent random variables Xi ∈ [0, 1], X =∑
iXi,

δ ≥ 0 : Pr
[
X ≥ (1 + δ) · E [X]

]
≤ e−

δ2 E[X]
2+δ

0 ≤ δ ≤ 1 : Pr
[
X ≤ (1− δ) · E[X]

]
≤ e−

δ2 E[X]
2

In our case, we want

|A ∩ S| = |S| · t
n
± εt =

|S| · t
n

(
1± εn

|S|

)
.

Thus δ = εn
|S| . We now calculate the probability that |A∩S| is greater than

(
1 + εn

|S|

)
E [|A ∩ S|].

Consider the case when δ is large, say δ = εn
|S| ≥ 1. Then δ2

2+δ
= c′δ for an absolute constant

c′, and so

Pr

[
|A ∩ S| ≥

(
1 +

εn

|S|

)
E [|A ∩ S|]

]
≤ e−c

′( εn|S|)·
|S|t
n = e−c

′εt. (7.3)

As the number of sets in F are Õ
(

1
εd

)
, we can set t = Õ

(
1
ε

)
, and conclude that, with high

probability, A fails for no set of F .
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3. PACKING LEMMA TAKES CARE OF LARGE SETS.

It remains to deal with the case of sets S with |S| ≥ εn. This poses a problem, as the
error interval—εt—is independent of the size of S. As the tail bounds will give the failure
probability as a function of the size of S, for |S| large enough, εt could occur inside this
‘margin of error’, and so is likely to happen.

To be specific, when δ = εn
|S| ≤ 1, we have δ2

2+δ
≥ δ2

3
, and so

Pr

[
|A ∩ S| ≥

(
1 +

εn

|S|

)
E [|A ∩ S|]

]
≤ e−

1
3( εn|S|)

2· |S|t
n = e−

1
3
ε2nt
|S| ≤ e−

1
3
ε2t.

Here we are forced to set t = Θ
(

1
ε2

log 1
ε

)
to take care of all the Õ

(
1
εd

)
sets in F , and we’re

back to our old bound.

However, notice that in the last inequality above, we upper-bounded |S| by n. If it were
true that the number of sets in F of size Ω (n) were O (1), then we’d still be fine, as then
we could set t = Θ

(
d
ε2

)
as we only have to union over O(1) such events. Unfortunately

that is too optimistic†.

However, in this worst-case scenario—say when considering sets of size Ω (n) in F—it is
clear that these sets have a lot of elements of X in common, and so we really need to union
over a much smaller set of events. Thus we consider the sets of F by their sizes, and use
the packing lemma to capture the fact that there are few sets that are the ‘basic’, and that
most of the large sets are combinations of these basic sets.

However, the number of these basic sets increase with decreasing set sizes when using
the packing lemma, and thus the bounds degrade as the set size decrease. Thus we will
switch over to the previous analysis when the remaining sets have a small-enough size.
This trade-off will give us our desired bound.

We now give the complete formal proof incorporating these ideas.

? ? ?

We will construct a series of maximal packings. For a parameter k to be fixed later, for
each i = 1, . . . , k + 1, define

Pi : a maximal
( n

22i

)
-packing of (X,F).

†Consider when X is a set of n points in Rd, and the subsets of F are induced by half-spaces. This has
VC-dimension d+ 1. Further, there are

(
n
d

)
distinct subsets produced by hyperplanes, one side of which has

at least n
2 points. Thus, there are

(
n
d

)
= Ω

(
nd
)

subsets of size at least n
2 in F .
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At the i-th level, by the packing lemma, we have

|Pi| = O

((
n

n/22i

)d)
= O

(
22di
)
.

For each i ∈ [1, k] and S ∈ Pi+1 \ Pi, by the maximality of Pi, there exists a set FS ∈ Pi
such that

|∆ (S, FS)| ≤ n

22i
.

For all i = 1, . . . , k, define the sets

Ai = {S \ FS : S ∈ Pi+1 \ Pi} ,

Bi = {FS \ S : S ∈ Pi+1 \ Pi} .

Then we have

|Ai|, |Bi| ≤ |Pi+1| = O
(
22d(i+1)

)
, and ∀ S ′ ∈ Ai ∪ Bi, |S ′| ≤ n

22i
.

Lemma 7.3. For each j ∈ [1, k] and S ∈ Pj+1 \ Pj, there exist an initial set I ∈ P1 and sets

A1 ∈ A1, A2 ∈ A2, . . . , Aj ∈ Aj and B1 ∈ B1, B2 ∈ B2, . . . , Bj ∈ Bj

such that Ai ∩Bi = ∅ for all i = 1, . . . , j, and

S =

(
· · ·
((

(I −B1 + A1)−B2 + A2

)
−B3 + A3

)
· · · −Bj + Aj

)
. (7.4)

Furthermore, if A is an ε0-approximation for all the sets of P1 and an εi-approximation for
Ai ∪ Bi, then A is an (ε0 + 2ε1 + 2ε2 + · · ·+ 2εk)-approximation for all the sets of Pk.

Proof. As S ∈ Pj+1 \ Pj, there exists FS ∈ Pj is such that |∆ (S, FS) | ≤ n
22j , and further we

can write
S = FS + (S \ FS)− (FS \ S) = FS + Aj −Bj,

where Aj ∈ Aj and Bj ∈ Bj.
We can again write FS ∈ Pj as an addition/subtraction of sets inAj−1 and Bj−1. Continuing
like this recursively, we get that any set S ∈ Pj+1 \ Pj can be written as addition of j sets
and subtraction of j sets, ending up at some set I ∈ P1. This gives Equality (7.4).

For the second part, assume that the set A ⊆ X is an ε0-approximation for P1 and an
εi-approximation for the sets in Ai ∪ Bi, for i = 1, . . . , k. In other words,

for all S ′ ∈ Ai,Bi : |A ∩ S ′| = |S
′| · |A|
n

± εi · |A|.
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Assume that for any S ′ ∈ Pj \ Pj−1, we have

|A ∩ S ′| = |S
′| · |A|
n

±
(
ε0 + 2

j−1∑
i=1

εi

)
· |A|.

Then we have |S| = |FS|+ |Aj| − |Bj|, and so

|A ∩ S| = |A ∩ FS|+ |A ∩ Aj| − |A ∩Bj|

=

(
|FS| · |A|

n
±
(
ε0 + 2

j−1∑
i=1

εi

)
· |A|

)
+

(
|Aj| · |A|

n
± εj · |A|

)
−
(
|Bj| · |A|

n
± εj · |A|

)

=

(
(|FS|+ |Aj| − |Bj|) · |A|

n

)
±
(
ε0 + 2

j−1∑
i=1

εi

)
· |A| ± εj · |A| ± εj · |A|

=
|S| · |A|

n
±
(
ε0 + 2

j∑
i=1

εi

)
· |A|.

We set ε0 = ε
4

and for i = 1, . . . , k,

εi =

√
i

4 · 2i · ε.

We now calculate the probability that for any fixed index i, A is not an εi-approximation
for some set in Ai ∪ Bi. For a fixed set Si ∈ Ai ∪ Bi, this probability is

Pr

[
|A ∩ Si| <

(
1− εin

|Si|

)
E [|A ∩ Si|]

]
+ Pr

[
|A ∩ Si| >

(
1 +

εin

|Si|

)
E [|A ∩ Si|]

]
,

where E [|A ∩ Si|] = |Si|t
n

. In our case, δ = εin
|Si| , and so Chernoff’s bound gives

Pr

[
|A ∩ Si| ≤

(
1− εin

|Si|

)
E [|A ∩ Si|]

]
≤ exp

(
−1

2

ε2in
2

|Si|2
|Si|t
n

)
= exp

(
−1

2

ε2int

|Si|

)
≤ e−

1
8
iε2t.

At level i, there are O
(
22d(i+1)

)
sets in Ai ∪Bi over which we will use the union bound. As

the above probability of failure of each fixed set of Ai∪Bi is at most e−Ω(i·ε2·t), it suffices to
set t = O

(
d
ε2

)
, and we will end up with a geometric series, which when summed up over

all levels, is less than 1.

However, the asymmetry of the Chernoff bound poses problems for the other direction:

Pr

[
|A ∩ Si| ≥

(
1 +

εin

|Si|

)
E [|A ∩ Si|]

]
≤ exp

− ε2in
2

|Si|2
|Si|t
n

2 + εin
|Si|
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= exp

(
− ε2int

2|Si|+ εin

)
≤ exp

− iε2nt

22i+4
(

2 · n/22i +
√
iεn

2i+2

)


= exp

(
− iε2t

25 + 4 · 2i
√
iε

)
.

The function 2i
√
iε is increasing with the depth i of our decomposition scheme. We will fix

k so that 2k
√
kε ≤ 1, achieved by setting k = log

(
1
ε

)1/2. Then the probability that A fails
to be an εi-approximation simultaneously for all the sets of Ai ∪Bi, for all i = 1, . . . , k, can
be upper-bounded by

k∑
i=1

∑
S∈Ai∪Bi

Pr [A is not an εi-approximation for S ]

≤ 2
k∑
i=1

|Ai ∪ Bi| · e−
iε2t
36 ≤ 2

k∑
i=1

O
(
22d(i+1)

)
· e−2di � 1,

where the second-last inequality follows by setting t = 72d
ε2

. Thus, with non-zero probability,
A is an εi-approximation simultaneously for all the sets of Ai,Bi, for all i = 1, . . . , k.

Now we finish up the proof by considering all possible S ∈ F :

Case S ∈ P1: Noting that |P1| = O
(
22d
)

and ε0 = ε
4
,

Pr [A is not an ε0-approximation for P1 ] ≤ 2
∑
S∈P1

e
− 1

3

ε20n
2

|S|2
|S|t
n

= 2
∑
S∈P1

e−
ε2nt
48|S| ≤ 2 ·O

(
22d
)
· e−1.5ε2t � 1.

Thus A is an ε0-approximation for P1.

Case S ∈ Pk \ P1: For any set S ∈ Pk, A is an ε′-approximation (Lemma 7.3), where

ε′ ≤ ε0 +
k∑
i=1

2εi =
ε

4
+

k∑
i=1

2

√
i

4 · 2i · ε =
ε

4
+ ε ·

k∑
i=1

√
i

2 · 2i ≤
ε

3
.

Case S ∈ F \ Pk: Let FS ∈ Pk be such that |∆ (S, FS) | ≤ n
22k ≤ εn. Then all the O

(
d
ε2

log 1
ε

)
sets in

R = {S − FS, FS − S : S ∈ F \ Pk}
have size at most εn, and as shown before in equality (7.3), with non-zero probability,
A is an ε

3
-approximation for R†. As each set in F \ Pk can be written as a set of Pk

†Note that we only need to worry about over-sampling from each S of size at most εn.
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with addition and substraction of two sets ofR, we conclude that A is an ε′+ ε
3
+ ε

3
≤ ε

approximation for all sets of F \ Pk.

This completes the proof.
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