4.4 Shallow Packings

“The highest activity a human being can attain is learning for understanding, because
to understand is to be free.”

Baruch Spinoza

As observed earlier, set systems (X, F) of VC-dimension d behave, in many respects, like
half-spaces or balls in R?. For example, the number of sets in F is O (|X|)?. On the other
hand, given a set P of points in R?, the number of subsets of P induced by half-spaces is
O (|P|*). This section continues this correspondence through the lens of packing.

Given a set of P of n points in [0, n]?, if the distance between every pair of points of P is at

least §, then |P| = O <(%)d> The analogous abstract case then becomes:

Theorem 4.7. Given positive integers d and 6, let F = {S;,...,S,,} be a set system on a set
X of n elements, with VC-dim(F) < d. Further assume that for every 1 < i < j < m, we

have |A(S;, S;)| > 6. Then | F| = O ((n/5)d>.
Proof. From Lemma we have

. 4d
|F| <2-|F|a], where A C X is a uniform random sample of size at most Tn

The Primal Shatter Lemma gives an upper-bound on |F| 4], in fact independent of the
specific choice of A. Thus

FI<2-|Flul =0 ((%)) 0 <(47”)> |

Next, we present a packing statement for the case where each set of F further has size at
most k, for some integer k. Unsurprisingly, the number of sets in the packing F can then
be upper-bounded by the number of sets in the projection F| 4 of a certain size.

Recall the definition of shallow-cell complexity of a set system:

Definition 3.1. A set system (X, F) has shallow-cell complexity ¢(-,-) if for any integer k and
any subset Y C X, the number of sets in F|y of size at most k is at most |Y| - o(|Y|, k).
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Theorem 4.8. Given positive integers k,d and ¢, let F = {Si,..., S} be a set system on a
set X of n elements, and with shallow-cell complexity ¢(-,-) and VC-dim(F) < d. Further
assume that

1. |Si| <kforalli=1...m, and

2. |A(S;,Sj)| =6 foralll <i<j<m.

24d 4 12dk
Then |F| < n-gp( dn 124 )

4] § 7 0

Intuition. Pick each element p € X into a sample R with probability p = ;. Let

be the projection of 7 onto R. We have E[|R|] = %, and for each S; € F,

IS =B (s ARl =20 < 2
Furthermore, for any two indices i and j:
'l |A(SZ>S>|
E [JA(S; )] = Tj > 1

So, in expectation, F|x consists of sets of size at most £ over a set of |R| = % elements.
As the symmetric difference between any pair of sets in F|j is at least one, the sets S/ are

distinct and thus "
n n
— < . =)

We next give the formal proof.

Proof. Let A C X be a uniform random sample of size 22 — 1. Note that E[|S N A|] < 24
as |S| < k for all S € F. Define

4
flz{SGFI |SﬂA|>3$}

By Markov’s inequality, for any S € F,

4dk 1
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Thus

EllFall < E[AT+EIF\F)]al

4dk

<

SeF

|F|  4dn 4dn 12dk
< -+ ’ ) )
-3 ) ) o

where the projection size of F \ F; to A is bounded by ¢ (-, -). Now the bound follows from
applying Lemma 4.3}

F|  4dn 4ddn 12dk
A2 el <2 (B 50 )

) )
4dn 4dn 12dk
— |F| <6- : .
e (5o (5 50))

Bibliography and discussion. The shallow packing lemma for some geometric
set systems was first shown in [[1]. The statement was then generalized, and the
proof simplified, in [2], whose presentation we have essentially followed here.
The technical trick in the proof, at first somewhat counter-intuitive, is to upper-
bound the desired quantity, |F|, by a function that involves |F| itself. In the
computer science literature, this is sometimes called boot-strapping.

[1] K. Dutta, E. Ezra, and A. Ghosh. Two proofs for shallow packings. Discrete & Computational
Geometry, 56(4):910-939, 2016.

[2] N. H. Mustafa. A simple proof of the shallow packing lemma. Discrete & Computational Geom-
etry, 55(3):739-743, 2016.
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Chapter 7

Epsilon Approximations

Definition 7.1. Given a set system (X, F), an e-approximation is a subset A C X such that
for any set S € F, we have

S| [SNA]

—_— = <€

(X[ 4]

7.1 Epsilon-Approximations via Halving

The main theorem we will prove in this section is:

Theorem 7.1. Let (X, F) be a set system, | X| = n, with the property that
foranyY C X,  |Fly|=0(|Y]%).

Then there exists an e-approximation for F of size O (6% log %)

Basic idea. Imagine that we could pick a set R, C X such that |R,| = 5 and R, is also
‘equally representative’ of all the other sets in F. Namely, R, contains exactly half of the
elements of each set of F:

S

forall S € F: |R1ﬁ51—%.

Repeating the above step, say that we could pick R, C Ry, with ‘RQ—” = % elements, such
that |[R, N S| = Rins| ‘7‘2‘. See Figure Continuing in this manner, let R; be the set at

2
the i-th iteration. Then we have

S
IRi| :22 IR N S| :’2—| forall S € F.



’.

Figure 7.1: At each step, the total number of points halve; ideally, the number of points
within each set—disks in this case—is also halved.

Then for any S € F, the proportion of points of S in any R; will be equal to the proportion
of points of S in X, namely

18] 1SN R
| X | R

ISl _ 181/
n n/2

The problem is that, even at the first step, a set #; C X that contains @ points, and also
exactly halves every set is not always possible. The accuracy of R; will have to depend on
the number of sets in F. For example, for the complete set system F = 2%, for any choice
R, of § elements, there will be a set of  elements in F, namely the set X \ Ry, that will

not share any points of R;.

Thus one can only ask for the best Ry, |R:| = %, such that for all S € F, |[R; N .S5] is as close

as possible to @, although necessarily as a function of n and |F|. Not surprisingly, we
will pick R; randomly, by adding each element p € X to R; with probability % First, note

that the expected number of elements picked into R, is 7. Not only that, but the expected

number of elements picked from any fixed S € F is also @ Of course that is unlikely to
be true for all sets simultaneously'.

The key to proving our main theorem will be a halving lemma, which states the existence
of a set Ry, |Ri| = % such that:

forall S € F:  |RiNS|= @ +0 (\/|X| 1n|fy) .

"Take the complete set system example again.
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Set Ry = X, and using the halving lemma, we iteratively construct R; from R;_y, fori > 1.
However, unlike earlier, errors accumulate with each iteration. As R; = Z, after i steps, a
calculation shows that, for each S € F, we have

21’

i—1

i— hl’R’d
51, 2O WVIRIRTER) 151, 1 o0
|RZHS| == 7:‘: : 2(i71)7j == 7:‘: 2(1.71) : 27.0 |Rj|lH’Rj|d .

7=0 7=0

The key here is in bounding the growth of the sum of errors. It turns out that the term
2/ dominates the error term, and so a calculation will show that the terms increase by a
constant factor at each iteration. This gives an increasing geometric series, and so we have

RN S| = |S’ +0 (\/|RZ—| ln|Ri|d> .

Going to back e-approximations, as |R;| = %, we have
IS | < 151 In |R;|
O (VIR R) ~0 .
[ Rl n [ il dividing by |R:i| || X|  |Ri] |R;|

We now choose i to get this error to be at most e. The reader can verify that if we set

i = log ( d), R; will be an e-approximation. The size of R; is then X = O (41og ¢).

PROOF OF MAIN THEOREM

We now turn to the formal proof of the main theorem. The precise statement of the halving
claim is the following.

Lemma 7.1 (Halving lemma). Given a set system (X, F), X = {p1,...,pn}, |F| = m, there
exists a set Ry C X, |Ry| = §, such that

|5!

forall S € F, IRy NS| = | X | In|F|.

Proof. We prove this claim by showing that a random R, suffices with non-zero probability.
Independently with probability 3, assign a value ‘+1’ or -1’ to each p; € X. Let X; be the
value assigned to p;.

Set A = 2,/|X|In|F|. Then by the Chernoff bound, we have

ORI
35 — o ST —2In|F| . _~
foreach S € F, Pr [ZX > A 75T = ¢ K] <e < ik (7.1)

pi€S

109



for |F| > 2. By the union bound, the probability that there exists a set in F that fails to
satisfy inequality (7.1) can be bounded as

> Pr [Zx > A

SeF p;ES

<237 2|f| 5'

SeF

Similarly, the probability that there exists a set S with >~ ¢ X; < —A is less than z.

Thus for each set S of F, the number of elements assigned ‘+1’ is equal, within an additive
factor of A, to the elements assigned ‘-1’. Thus we can now take the elements of X assigned
the value ‘+1’ as our required set R;. We are done, except a minor technical detail: we
need to pick exactly 2 elements’, which need not necessarily be true for either of ‘+1’ or
‘-1’ valued elements. We wrap up these details next.

Fix any set S € F. Let ST C S be the elements with value +1, and S~ = S\ S* the
elements with value —1. For each set S € F, we have

—~A<|ST|—|ST| <A,
As |STI+ 57 = 5],
—ALIST—]57I <A = —AL2IST| -9 <A

— @Jr%Z{S*{Z

Isl_a
2 2

5

Assuming w.l.o.g. that X is also a set in F, and that there are at least I elements assigned
“+1’; then § < |XT| < & + %. By discarding at most % elements from X, we get the set
R, with  elements. For each set S € F,

A\ A
[RinS|> |t - <|§| —)——:@—2\/|X|log|f|-

2 2 2

We return to the main theorem:

Theorem 7.1. Let (X, F) be a set system, | X | = n, with the property that
foranyY C X,  |Fly|=0(|Y]%).

Then there exists an e-approximation for F of size O (4 log 4).

"This condition that |R; | be exactly equal to Z is not really necessary, but it simplifies the subsequent alge-
braic calculations.
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Proof. Given (X, F), let ¢ be a constant such that for any Y C X, we have

Flvl < e [Y]"

We will iteratively compute R;. Set the initial set Ry = X. Apply the halving lemma to
(X,F)togetaset Ry C X, |Ri| = %, such that

forall S e F: |R1QS| = @iQ\/|R0’1n(C’R0|d) (72)
Consider the set system F; derived from projecting F to R;, namely
.F1:F|R1:{R1QSIS€.F}.

Then we have

d
|]-"1|§c-|R1|d:c-<g> .

Now apply the halving lemma, this time on (R, F;), to get a set Ry C Ry, |Rs| =
such that for all S € F:

|[R1 N S| 4o

IRy N S| = |R1|In (¢ |F1])

Bl 2 /[Ro|n (c|Ro |4
= -2 vl g' n (cRol") + 2/|Ry| In (¢|R1|?) (here we used inequality (7.2))

S| .~ VIR In (c[R;]9)
= i2Z S .

Continuing on, we get the following.

Claim 7.2.

RN S| = 122\/”%““ i),

2(i—1)—

Proof. Assume we have the set system (Ri,l, Fioi={R;_1NS: S € F}), where

|Ri—1| = |Fica| < c- |Ri—1|d-

Qi— 9i—1°

Furthermore, by inductive hypothesis, assume that

QZ wRun CIRT)

|R;_1NS|=

27,1

Applying the halving lemma to (R; 1, F;_1), we get a set R;, |R;| = @ = 2, with

21)

|R;NS| =

RiiNS
'12—| + 2¢/|Ri_a[In (c[ Ri—1])
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Z\/IRIln (el B5[)

2(1 Do :|:2\/|RZ,1‘1H (C‘Rifl‘d)

22 VUZCET)

2(i—-1)—

We bound the resulting error term:

VI CIRF)
22 e = 5 1221\/\3 | In (c| R |4)

2 . ,
< g ¢ 2RI (| Ry = 2¢ - /| Ri[ In (e[ Rif ),

where ¢ is an absolute constant resulting from the geometric series.

Thus, at the i-th iteration, we have

s = 2o \/|R|1n |R|>

R:0S| S|
| i n

We set the number of iterations ¢ so that

dividing by |R;|

The reader can verify that indeed this is true when ¢ = log (dcfrf#), for a large-enough
constant ¢; > 1 (depending only on ¢ and /). ‘

Finally, the size of our approximation is

R n n dcllogg
Bl =5=—m =g -
d
dcllog;

Bibliography and discussion. This connection between balanced colorings (dis-
crepancy) and e-approximations was discovered in [1].

TCan be seen by a change of variables, from j to I. Set | such that |R;| = g =
i logn n(c2ld n(c(n/2t—1)d
2. Then YLV VIRIMER) = XA, o (2ED = 0 (eI o

0] (2i L/n/2=11n (c(n/2i-1)d )) = (2i71¢‘Ri—1|ln (C|Ri—1|d)>'
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