4.4 Shallow Packings

"The highest activity a human being can attain is learning for understanding, because to understand is to be free."

Baruch Spinoza

As observed earlier, set systems (X, \mathcal{F}) of VC-dimension d behave, in many respects, like half-spaces or balls in \mathbb{R}^d . For example, the number of sets in \mathcal{F} is $O(|X|)^d$. On the other hand, given a set P of points in \mathbb{R}^d , the number of subsets of P induced by half-spaces is $O(|P|^d)$. This section continues this correspondence through the lens of packing.

Given a set of *P* of *n* points in $[0, n]^d$, if the distance between every pair of points of *P* is at least δ , then $|P| = O\left(\left(\frac{n}{\delta}\right)^d\right)$. The analogous abstract case then becomes:

Theorem 4.7. Given positive integers d and δ , let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a set system on a set X of n elements, with $\operatorname{VC-dim}(\mathcal{F}) \leq d$. Further assume that for every $1 \leq i < j \leq m$, we have $|\Delta(S_i, S_j)| \geq \delta$. Then $|\mathcal{F}| = O\left((n/\delta)^d\right)$.

Proof. From Lemma 4.3, we have

 $|\mathcal{F}| \leq 2 \cdot |\mathcal{F}|_A|$, where $A \subseteq X$ is a uniform random sample of size at most $\frac{4dn}{\delta}$.

The Primal Shatter Lemma 3.1 gives an upper-bound on $|\mathcal{F}|_A|$, in fact independent of the specific choice of *A*. Thus

$$|\mathcal{F}| \le 2 \cdot |\mathcal{F}|_A| = O\left(\left(\frac{e|A|}{d}\right)^d\right) = O\left(\left(\frac{4en}{\delta}\right)^d\right).$$

Next, we present a packing statement for the case where each set of \mathcal{F} further has size at most k, for some integer k. Unsurprisingly, the number of sets in the packing \mathcal{F} can then be upper-bounded by the number of sets in the projection $\mathcal{F}|_A$ of a certain size.

Recall the definition of shallow-cell complexity of a set system:

Definition 3.1. A set system (X, \mathcal{F}) has shallow-cell complexity $\varphi(\cdot, \cdot)$ if for any integer k and any subset $Y \subseteq X$, the number of sets in $\mathcal{F}|_Y$ of size at most k is at most $|Y| \cdot \varphi(|Y|, k)$.

Theorem 4.8. Given positive integers k, d and δ , let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be a set system on a set X of n elements, and with shallow-cell complexity $\varphi(\cdot, \cdot)$ and $\operatorname{VC-dim}(\mathcal{F}) \leq d$. Further assume that

- 1. $|S_i| \le k$ for all i = 1 ... m, and
- 2. $|\Delta(S_i, S_j)| \ge \delta$ for all $1 \le i < j \le m$.

Then $|\mathcal{F}| \leq \frac{24dn}{\delta} \cdot \varphi\left(\frac{4dn}{\delta}, \frac{12dk}{\delta}\right).$

Intuition. Pick each element $p \in X$ into a sample R with probability $p = \frac{1}{\delta}$. Let

$$\mathcal{F}|_R = \{S'_i = S_i \cap R \colon S_i \in \mathcal{F}\}$$

be the projection of \mathcal{F} onto R. We have $E[|R|] = \frac{n}{\delta}$, and for each $S_i \in \mathcal{F}$,

$$\mathbf{E}\left[|S_i'|\right] = \mathbf{E}\left[|S_i \cap R|\right] = \frac{|S_i|}{\delta} \le \frac{k}{\delta}.$$

Furthermore, for any two indices *i* and *j*:

$$\mathbb{E}\left[\left|\Delta(S'_i, S'_j)\right|\right] = \frac{\left|\Delta(S_i, S_j)\right|}{\delta} \ge 1.$$

So, in expectation, $\mathcal{F}|_R$ consists of sets of size at most $\frac{k}{\delta}$ over a set of $|R| = \frac{n}{\delta}$ elements. As the symmetric difference between any pair of sets in $\mathcal{F}|_R$ is at least one, the sets S'_i are distinct and thus

$$|\mathcal{F}| = |\mathcal{F}|_R| \le \frac{n}{\delta} \cdot \varphi\left(\frac{n}{\delta}, \frac{k}{\delta}\right).$$

We next give the formal proof.

* * *

Proof. Let $A \subseteq X$ be a uniform random sample of size $\frac{4dn}{\delta} - 1$. Note that $E[|S \cap A|] \leq \frac{4dk}{\delta}$ as $|S| \leq k$ for all $S \in \mathcal{F}$. Define

$$\mathcal{F}_1 = \left\{ S \in \mathcal{F} \colon |S \cap A| > 3 \cdot \frac{4dk}{\delta} \right\}.$$

By Markov's inequality, for any $S \in \mathcal{F}$,

$$\Pr\left[S \in \mathcal{F}_1\right] = \Pr\left[\left|S \cap A\right| > 3 \cdot \frac{4dk}{\delta}\right] \le \frac{1}{3}.$$

Thus

$$\begin{split} \mathbf{E}\left[|\mathcal{F}|_{A}|\right] &\leq \mathbf{E}\left[|\mathcal{F}_{1}|\right] + \mathbf{E}\left[|(\mathcal{F} \setminus \mathcal{F}_{1})|_{A}|\right] \\ &\leq \sum_{S \in \mathcal{F}} \Pr\left[S \in \mathcal{F}_{1}\right] + |A| \cdot \varphi\left(|A|, 3 \cdot \frac{4dk}{\delta}\right) \\ &\leq \frac{|\mathcal{F}|}{3} + \frac{4dn}{\delta} \cdot \varphi\left(\frac{4dn}{\delta}, \frac{12dk}{\delta}\right), \end{split}$$

where the projection size of $\mathcal{F} \setminus \mathcal{F}_1$ to A is bounded by $\varphi(\cdot, \cdot)$. Now the bound follows from applying Lemma 4.3:

$$|\mathcal{F}| \le 2 \cdot \mathbb{E}\left[|\mathcal{F}|_{A}|\right] \le 2\left(\frac{|\mathcal{F}|}{3} + \frac{4dn}{\delta} \cdot \varphi\left(\frac{4dn}{\delta}, \frac{12dk}{\delta}\right)\right)$$
$$\implies |\mathcal{F}| \le 6 \cdot \left(\frac{4dn}{\delta} \cdot \varphi\left(\frac{4dn}{\delta}, \frac{12dk}{\delta}\right)\right).$$

Г	_	_	_

Bibliography and discussion. The shallow packing lemma for some geometric set systems was first shown in [1]. The statement was then generalized, and the proof simplified, in [2], whose presentation we have essentially followed here. The technical trick in the proof, at first somewhat counter-intuitive, is to upperbound the desired quantity, $|\mathcal{F}|$, by a function that involves $|\mathcal{F}|$ itself. In the computer science literature, this is sometimes called boot-strapping.

- [1] K. Dutta, E. Ezra, and A. Ghosh. Two proofs for shallow packings. *Discrete & Computational Geometry*, 56(4):910–939, 2016.
- [2] N. H. Mustafa. A simple proof of the shallow packing lemma. *Discrete & Computational Geometry*, 55(3):739–743, 2016.

Chapter 7

Epsilon Approximations

Definition 7.1. Given a set system (X, \mathcal{F}) , an ϵ -approximation is a subset $A \subseteq X$ such that for any set $S \in \mathcal{F}$, we have

S	$ S \cap A $	1
$\overline{ X }$	A	$\geq \epsilon$.

7.1 Epsilon-Approximations via Halving

The main theorem we will prove in this section is:

Theorem 7.1. Let (X, \mathcal{F}) be a set system, |X| = n, with the property that

for any $Y \subseteq X$, $|\mathcal{F}|_Y| = O(|Y|^d)$.

Then there exists an ϵ -approximation for \mathcal{F} of size $O\left(\frac{d}{\epsilon^2}\log\frac{d}{\epsilon}\right)$.

Basic idea. Imagine that we could pick a set $R_1 \subseteq X$ such that $|R_1| = \frac{n}{2}$ and R_1 is also 'equally representative' of all the other sets in \mathcal{F} . Namely, R_1 contains exactly half of the elements of each set of \mathcal{F} :

for all
$$S \in \mathcal{F}$$
: $|R_1 \cap S| = \frac{|S|}{2}$.

Repeating the above step, say that we could pick $R_2 \subseteq R_1$, with $\frac{|R_1|}{2} = \frac{n}{4}$ elements, such that $|R_2 \cap S| = \frac{|R_1 \cap S|}{2} = \frac{|S|}{4}$. See Figure 7.1. Continuing in this manner, let R_i be the set at the *i*-th iteration. Then we have

$$|R_i| = \frac{n}{2^i},$$
 $|R_i \cap S| = \frac{|S|}{2^i},$ for all $S \in \mathcal{F}.$

Figure 7.1: At each step, the total number of points halve; ideally, the number of points within *each* set—disks in this case—is also halved.

Then for any $S \in \mathcal{F}$, the proportion of points of S in any R_i will be equal to the proportion of points of S in X, namely

$$\left|\frac{|S|}{|X|} - \frac{|S \cap R_i|}{|R_i|}\right| = \left|\frac{|S|}{n} - \frac{|S|/2^i}{n/2^i}\right| = 0.$$

The problem is that, even at the first step, a set $R_1 \subseteq X$ that contains $\frac{|X|}{2}$ points, and also exactly halves *every* set is not always possible. The accuracy of R_1 will have to depend on the number of sets in \mathcal{F} . For example, for the complete set system $\mathcal{F} = 2^X$, for any choice R_1 of $\frac{n}{2}$ elements, there will be a set of $\frac{n}{2}$ elements in \mathcal{F} , namely the set $X \setminus R_1$, that will not share *any* points of R_1 .

Thus one can only ask for the best R_1 , $|R_1| = \frac{n}{2}$, such that for all $S \in \mathcal{F}$, $|R_1 \cap S|$ is as close as possible to $\frac{|S|}{2}$, although necessarily as a function of n and $|\mathcal{F}|$. Not surprisingly, we will pick R_1 randomly, by adding each element $p \in X$ to R_1 with probability $\frac{1}{2}$. First, note that the expected number of elements picked into R_1 is $\frac{n}{2}$. Not only that, but the expected number of elements picked from any *fixed* $S \in \mathcal{F}$ is also $\frac{|S|}{2}$. Of course that is unlikely to be true for all sets *simultaneously*[†].

* * *

The key to proving our main theorem will be a halving lemma, which states the existence of a set R_1 , $|R_1| = \frac{n}{2}$ such that:

for all
$$S \in \mathcal{F}$$
: $|R_1 \cap S| = \frac{|S|}{2} \pm O\left(\sqrt{|X|\ln|\mathcal{F}|}\right).$

[†]Take the complete set system example again.

Set $R_0 = X$, and using the halving lemma, we iteratively construct R_i from R_{i-1} , for $i \ge 1$. However, unlike earlier, errors accumulate with each iteration. As $R_i = \frac{n}{2^i}$, after *i* steps, a calculation shows that, for each $S \in \mathcal{F}$, we have

$$|R_i \cap S| = \frac{|S|}{2^i} \pm \sum_{j=0}^{i-1} \frac{O\left(\sqrt{|R_j|\ln|R_j|^d}\right)}{2^{(i-1)-j}} = \frac{|S|}{2^i} \pm \frac{1}{2^{(i-1)}} \sum_{j=0}^{i-1} 2^j \cdot O\left(\sqrt{|R_j|\ln|R_j|^d}\right).$$

The key here is in bounding the growth of the sum of errors. It turns out that the term 2^{j} dominates the error term, and so a calculation will show that the terms increase by a constant factor at each iteration. This gives an increasing geometric series, and so we have

$$|R_i \cap S| = \frac{|S|}{2^i} \pm O\left(\sqrt{|R_i|\ln|R_i|^d}\right).$$

Going to back ϵ -approximations, as $|R_i| = \frac{|X|}{2^i}$, we have

$$\left|\frac{|S|}{2^{i}} - |S \cap R_{i}|\right| = O\left(\sqrt{|R_{i}|\ln|R_{i}|^{d}}\right) \quad \underset{\text{dividing by }|R_{i}|}{\Longrightarrow} \quad \left|\frac{|S|}{|X|} - \frac{|S \cap R_{i}|}{|R_{i}|}\right| = O\left(\sqrt{\frac{\ln|R_{i}|^{d}}{|R_{i}|}}\right)$$

We now choose *i* to get this error to be at most ϵ . The reader can verify that if we set $i = \log\left(\frac{\epsilon^2 n}{d\log\frac{d}{\epsilon}}\right)$, R_i will be an ϵ -approximation. The size of R_i is then $\frac{|X|}{2^i} = O\left(\frac{d}{\epsilon^2}\log\frac{d}{\epsilon}\right)$.

* * *

PROOF OF MAIN THEOREM

We now turn to the formal proof of the main theorem. The precise statement of the halving claim is the following.

Lemma 7.1 (Halving lemma). Given a set system (X, \mathcal{F}) , $X = \{p_1, \ldots, p_n\}$, $|\mathcal{F}| = m$, there exists a set $R_1 \subseteq X$, $|R_1| = \frac{n}{2}$, such that

for all
$$S \in \mathcal{F}$$
, $|R_1 \cap S| = \frac{|S|}{2} \pm 2\sqrt{|X|\ln|\mathcal{F}|}$

Proof. We prove this claim by showing that a random R_1 suffices with non-zero probability. Independently with probability $\frac{1}{2}$, assign a value '+1' or '-1' to each $p_i \in X$. Let X_i be the value assigned to p_i .

Set $\Delta = 2\sqrt{|X| \ln |\mathcal{F}|}$. Then by the Chernoff bound, we have

for each
$$S \in \mathcal{F}$$
, $\Pr\left[\sum_{p_i \in S} X_i > \Delta\right] < e^{-\frac{\Delta^2}{2|S|}} = e^{-\frac{\left(2\sqrt{|X|\ln|\mathcal{F}|}\right)^2}{2|S|}} \le e^{-2\ln|\mathcal{F}|} < \frac{1}{2|\mathcal{F}|},$ (7.1)

for $|\mathcal{F}| \geq 2$. By the union bound, the probability that there exists a set in \mathcal{F} that fails to satisfy inequality (7.1) can be bounded as

$$\sum_{S \in \mathcal{F}} \Pr\left[\sum_{p_i \in S} X_i \ge \Delta\right] < \sum_{S \in \mathcal{F}} \frac{1}{2|\mathcal{F}|} = \frac{1}{2}.$$

Similarly, the probability that there exists a set S with $\sum_{p_i \in S} X_i \leq -\Delta$ is less than $\frac{1}{2}$.

Thus for each set S of \mathcal{F} , the number of elements assigned '+1' is equal, within an additive factor of Δ , to the elements assigned '-1'. Thus we can now take the elements of X assigned the value '+1' as our required set R_1 . We are done, except a minor technical detail: we need to pick exactly $\frac{n}{2}$ elements[†], which need not necessarily be true for either of '+1' or '-1' valued elements. We wrap up these details next.

Fix any set $S \in \mathcal{F}$. Let $S^+ \subseteq S$ be the elements with value +1, and $S^- = S \setminus S^+$ the elements with value -1. For each set $S \in \mathcal{F}$, we have

$$-\Delta \le |S^+| - |S^-| \le \Delta.$$

$$\begin{split} \operatorname{As} |S^+| + |S^-| &= |S|, \\ -\Delta \leq |S^+| - |S^-| \leq \Delta \implies -\Delta \leq 2|S^+| - |S| \leq \Delta \\ \implies \frac{|S|}{2} + \frac{\Delta}{2} \geq |S^+| \geq \frac{|S|}{2} - \frac{\Delta}{2}. \end{split}$$

Assuming w.l.o.g. that X is also a set in \mathcal{F} , and that there are at least $\frac{n}{2}$ elements assigned '+1'; then $\frac{n}{2} \leq |X^+| \leq \frac{n}{2} + \frac{\Delta}{2}$. By discarding at most $\frac{\Delta}{2}$ elements from X^+ , we get the set R_1 with $\frac{n}{2}$ elements. For each set $S \in \mathcal{F}$,

$$|R_1 \cap S| \ge |S^+| - \frac{\Delta}{2} \ge \left(\frac{|S|}{2} - \frac{\Delta}{2}\right) - \frac{\Delta}{2} = \frac{|S|}{2} - 2\sqrt{|X|\log|\mathcal{F}|}.$$
$$|R_1 \cap S| \le |S^+| \le \frac{|S|}{2} + \frac{\Delta}{2} \le \frac{|S|}{2} + 2\sqrt{|X|\log|\mathcal{F}|}.$$

We return to the main theorem:

Theorem 7.1. Let (X, \mathcal{F}) be a set system, |X| = n, with the property that

for any $Y \subseteq X$, $|\mathcal{F}|_Y| = O(|Y|^d)$.

Then there exists an ϵ -approximation for \mathcal{F} of size $O\left(\frac{d}{\epsilon^2}\log\frac{d}{\epsilon}\right)$.

[†]This condition that $|R_1|$ be exactly equal to $\frac{n}{2}$ is not really necessary, but it simplifies the subsequent algebraic calculations.

Proof. Given (X, \mathcal{F}) , let c be a constant such that for any $Y \subseteq X$, we have

$$|\mathcal{F}|_Y| \le c \cdot |Y|^d.$$

We will iteratively compute R_i . Set the initial set $R_0 = X$. Apply the halving lemma to (X, \mathcal{F}) to get a set $R_1 \subset X$, $|R_1| = \frac{n}{2}$, such that

for all
$$S \in \mathcal{F}$$
: $|R_1 \cap S| = \frac{|S|}{2} \pm 2\sqrt{|R_0|\ln(c|R_0|^d)}.$ (7.2)

Consider the set system \mathcal{F}_1 derived from projecting \mathcal{F} to R_1 , namely

$$\mathcal{F}_1 = \mathcal{F}|_{R_1} = \{R_1 \cap S \colon S \in \mathcal{F}\}.$$

Then we have

. -

$$|\mathcal{F}_1| \le c \cdot |R_1|^d = c \cdot \left(\frac{n}{2}\right)^d$$

Now apply the halving lemma, this time on (R_1, \mathcal{F}_1) , to get a set $R_2 \subset R_1$, $|R_2| = \frac{|R_1|}{2} = \frac{n}{4}$, such that for all $S \in \mathcal{F}$:

$$\begin{aligned} |R_2 \cap S| &= \frac{|R_1 \cap S|}{2} \pm 2\sqrt{|R_1|\ln(c|\mathcal{F}_1|)} \\ &= \frac{\frac{|S|}{2} \pm 2\sqrt{|R_0|\ln(c|R_0|^d)}}{2} \pm 2\sqrt{|R_1|\ln(c|R_1|^d)} \qquad \text{(here we used inequality (7.2))} \\ &= \frac{|S|}{4} \pm 2\sum_{j=0}^1 \frac{\sqrt{|R_j|\ln(c|R_j|^d)}}{2^{1-j}}. \end{aligned}$$

Continuing on, we get the following.

Claim 7.2.

$$|R_i \cap S| = \frac{|S|}{2^i} \pm 2\sum_{j=0}^{i-1} \frac{\sqrt{|R_j|\ln(c|R_j|^d)}}{2^{(i-1)-j}}$$

Proof. Assume we have the set system $(R_{i-1}, \mathcal{F}_{i-1} = \{R_{i-1} \cap S \colon S \in \mathcal{F}\})$, where

$$|R_{i-1}| = \frac{n}{2^{i-1}}, \qquad |\mathcal{F}_{i-1}| \le c \cdot |R_{i-1}|^d.$$

Furthermore, by inductive hypothesis, assume that

$$|R_{i-1} \cap S| = \frac{|S|}{2^{i-1}} \pm 2\sum_{j=0}^{i-2} \frac{\sqrt{|R_j| \ln(c|R_j|^d)}}{2^{(i-2)-j}}.$$

Applying the halving lemma to $(R_{i-1}, \mathcal{F}_{i-1})$, we get a set R_i , $|R_i| = \frac{|R_{i-1}|}{2} = \frac{n}{2^i}$, with

$$|R_i \cap S| = \frac{|R_{i-1} \cap S|}{2} \pm 2\sqrt{|R_{i-1}|\ln(c|R_{i-1}|^d)}$$

$$= \frac{|S|}{2^{i}} \pm 2\sum_{j=0}^{i-2} \frac{\sqrt{|R_{j}|\ln(c|R_{j}|^{d})}}{2^{(i-1)-j}} \pm 2\sqrt{|R_{i-1}|\ln(c|R_{i-1}|^{d})}$$
$$= \frac{|S|}{2^{i}} \pm 2\sum_{j=0}^{i-1} \frac{\sqrt{|R_{j}|\ln(c|R_{j}|^{d})}}{2^{(i-1)-j}}.$$

We bound the resulting error term:

$$2\sum_{j=0}^{i-1} \frac{\sqrt{|R_j| \ln(c|R_j|^d)}}{2^{(i-1)-j}} = \frac{2}{2^{i-1}} \sum_{j=0}^{i-1} 2^j \sqrt{|R_j| \ln(c|R_j|^d)}$$
$$\leq \frac{2}{2^{i-1}} \cdot c' \cdot 2^{i-1} \sqrt{|R_i| \ln(c|R_i|^d)}^{\dagger} = 2c' \cdot \sqrt{|R_i| \ln(c|R_i|^d)},$$

where c' is an absolute constant resulting from the geometric series.

Thus, at the i-th iteration, we have

$$\begin{aligned} |R_i \cap S| &= \frac{|S|}{2^i} \pm 2c' \sqrt{|R_i| \ln\left(c |R_i|^d\right)}, \\ & \underset{\text{dividing by } |R_i|}{\Longrightarrow} \left| \frac{|R_i \cap S|}{|R_i|} - \frac{|S|}{n} \right| \le 2c' \sqrt{\frac{\ln\left(c |R_i|^d\right)}{|R_i|}} \end{aligned}$$

We set the number of iterations t so that

$$2c'\sqrt{\frac{\ln\left(c\left|R_{t}\right|^{d}\right)}{\left|R_{t}\right|}} \leq \epsilon.$$

The reader can verify that indeed this is true when $t = \log\left(\frac{\epsilon^2 n}{dc_1 \log \frac{d}{\epsilon}}\right)$, for a large-enough constant $c_1 \ge 1$ (depending only on c and c').

Finally, the size of our approximation is

$$|R_t| = \frac{n}{2^t} = \frac{n}{\frac{\epsilon^2 n}{dc_1 \log \frac{d}{\epsilon}}} = \frac{dc_1 \log \frac{d}{\epsilon}}{\epsilon^2}.$$

Bibliography and discussion. This connection between balanced colorings (discrepancy) and ϵ -approximations was discovered in [1].

[†]Can be seen by a change of variables, from
$$j$$
 to l . Set l such that $|R_j| = \frac{n}{2^j} = 2^l$. Then $\sum_{j=0}^{i-1} 2^j \sqrt{|R_j| \ln(c|R_j|^d)} = n \sum_{l=\log n-(i-1)}^{\log n} \sqrt{\frac{\ln(c2^{ld})}{2^l}} = O\left(n \sqrt{\frac{\ln(c(n/2^{i-1})^d)}{n/2^{i-1}}}\right) = O\left(2^{i-1} \sqrt{|R_{i-1}| \ln(c|R_{i-1}|^d)}\right).$

[1] J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded VCdimension. *Combinatorica*, 13(4):455–466, 1993.