4.4 Shallow Packings

"The highest activity a human being can attain is learning for understanding, because to understand is to be free."

Baruch Spinoza

As observed earlier, set systems (X, \mathcal{F}) of VC-dimension d behave, in many respects, like half-spaces or balls in \mathbb{R}^{d}. For example, the number of sets in \mathcal{F} is $O(|X|)^{d}$. On the other hand, given a set P of points in \mathbb{R}^{d}, the number of subsets of P induced by half-spaces is $O\left(|P|^{d}\right)$. This section continues this correspondence through the lens of packing.

Given a set of P of n points in $[0, n]^{d}$, if the distance between every pair of points of P is at least δ, then $|P|=O\left(\left(\frac{n}{\delta}\right)^{d}\right)$. The analogous abstract case then becomes:

Theorem 4.7. Given positive integers d and δ, let $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a set system on a set X of n elements, with $\mathrm{VC}-\operatorname{dim}(\mathcal{F}) \leq d$. Further assume that for every $1 \leq i<j \leq m$, we have $\left|\Delta\left(S_{i}, S_{j}\right)\right| \geq \delta$. Then $|\mathcal{F}|=O\left((n / \delta)^{d}\right)$.

Proof. From Lemma 4.3, we have

$$
|\mathcal{F}| \leq 2 \cdot|\mathcal{F}|_{A} \mid, \quad \text { where } A \subseteq X \text { is a uniform random sample of size at most } \frac{4 d n}{\delta} .
$$

The Primal Shatter Lemma 3.1 gives an upper-bound on $|\mathcal{F}|_{A} \mid$, in fact independent of the specific choice of A. Thus

$$
|\mathcal{F}| \leq 2 \cdot|\mathcal{F}|_{A} \left\lvert\,=O\left(\left(\frac{e|A|}{d}\right)^{d}\right)=O\left(\left(\frac{4 e n}{\delta}\right)^{d}\right)\right.
$$

Next, we present a packing statement for the case where each set of \mathcal{F} further has size at most k, for some integer k. Unsurprisingly, the number of sets in the packing \mathcal{F} can then be upper-bounded by the number of sets in the projection $\left.\mathcal{F}\right|_{A}$ of a certain size.

Recall the definition of shallow-cell complexity of a set system:
Definition 3.1. A set system (X, \mathcal{F}) has shallow-cell complexity $\varphi(\cdot, \cdot)$ if for any integer k and any subset $Y \subseteq X$, the number of sets in $\left.\mathcal{F}\right|_{Y}$ of size at most k is at most $|Y| \cdot \varphi(|Y|, k)$.

Theorem 4.8. Given positive integers k, d and δ, let $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a set system on a set X of n elements, and with shallow-cell complexity $\varphi(\cdot, \cdot)$ and $\operatorname{VC-dim}(\mathcal{F}) \leq d$. Further assume that

1. $\left|S_{i}\right| \leq k$ for all $i=1 \ldots m$, and
2. $\left|\Delta\left(S_{i}, S_{j}\right)\right| \geq \delta$ for all $1 \leq i<j \leq m$.

Then $|\mathcal{F}| \leq \frac{24 d n}{\delta} \cdot \varphi\left(\frac{4 d n}{\delta}, \frac{12 d k}{\delta}\right)$.

Intuition. Pick each element $p \in X$ into a sample R with probability $p=\frac{1}{\delta}$. Let

$$
\left.\mathcal{F}\right|_{R}=\left\{S_{i}^{\prime}=S_{i} \cap R: S_{i} \in \mathcal{F}\right\}
$$

be the projection of \mathcal{F} onto R. We have $\mathrm{E}[|R|]=\frac{n}{\delta}$, and for each $S_{i} \in \mathcal{F}$,

$$
\mathrm{E}\left[\left|S_{i}^{\prime}\right|\right]=\mathrm{E}\left[\left|S_{i} \cap R\right|\right]=\frac{\left|S_{i}\right|}{\delta} \leq \frac{k}{\delta}
$$

Furthermore, for any two indices i and j :

$$
\mathrm{E}\left[\left|\Delta\left(S_{i}^{\prime}, S_{j}^{\prime}\right)\right|\right]=\frac{\left|\Delta\left(S_{i}, S_{j}\right)\right|}{\delta} \geq 1
$$

So, in expectation, $\left.\mathcal{F}\right|_{R}$ consists of sets of size at most $\frac{k}{\delta}$ over a set of $|R|=\frac{n}{\delta}$ elements. As the symmetric difference between any pair of sets in $\left.\mathcal{F}\right|_{R}$ is at least one, the sets S_{i}^{\prime} are distinct and thus

$$
|\mathcal{F}|=|\mathcal{F}|_{R} \left\lvert\, \leq \frac{n}{\delta} \cdot \varphi\left(\frac{n}{\delta}, \frac{k}{\delta}\right)\right.
$$

We next give the formal proof.

Proof. Let $A \subseteq X$ be a uniform random sample of size $\frac{4 d n}{\delta}-1$. Note that $\mathrm{E}[|S \cap A|] \leq \frac{4 d k}{\delta}$ as $|S| \leq k$ for all $S \in \mathcal{F}$. Define

$$
\mathcal{F}_{1}=\left\{S \in \mathcal{F}:|S \cap A|>3 \cdot \frac{4 d k}{\delta}\right\}
$$

By Markov's inequality, for any $S \in \mathcal{F}$,

$$
\operatorname{Pr}\left[S \in \mathcal{F}_{1}\right]=\operatorname{Pr}\left[|S \cap A|>3 \cdot \frac{4 d k}{\delta}\right] \leq \frac{1}{3}
$$

Thus

$$
\begin{aligned}
\mathrm{E}\left[|\mathcal{F}|_{A} \mid\right] & \leq \mathrm{E}\left[\left|\mathcal{F}_{1}\right|\right]+\mathrm{E}\left[\left|\left(\mathcal{F} \backslash \mathcal{F}_{1}\right)\right|_{A} \mid\right] \\
& \leq \sum_{S \in \mathcal{F}} \operatorname{Pr}\left[S \in \mathcal{F}_{1}\right]+|A| \cdot \varphi\left(|A|, 3 \cdot \frac{4 d k}{\delta}\right) \\
& \leq \frac{|\mathcal{F}|}{3}+\frac{4 d n}{\delta} \cdot \varphi\left(\frac{4 d n}{\delta}, \frac{12 d k}{\delta}\right),
\end{aligned}
$$

where the projection size of $\mathcal{F} \backslash \mathcal{F}_{1}$ to A is bounded by $\varphi(\cdot, \cdot)$. Now the bound follows from applying Lemma 4.3:

$$
\begin{aligned}
|\mathcal{F}| & \leq 2 \cdot \mathrm{E}\left[|\mathcal{F}|_{A} \mid\right] \leq 2\left(\frac{|\mathcal{F}|}{3}+\frac{4 d n}{\delta} \cdot \varphi\left(\frac{4 d n}{\delta}, \frac{12 d k}{\delta}\right)\right) \\
& \Longrightarrow|\mathcal{F}| \leq 6 \cdot\left(\frac{4 d n}{\delta} \cdot \varphi\left(\frac{4 d n}{\delta}, \frac{12 d k}{\delta}\right)\right)
\end{aligned}
$$

Bibliography and discussion. The shallow packing lemma for some geometric set systems was first shown in [1]. The statement was then generalized, and the proof simplified, in [2], whose presentation we have essentially followed here. The technical trick in the proof, at first somewhat counter-intuitive, is to upperbound the desired quantity, $|\mathcal{F}|$, by a function that involves $|\mathcal{F}|$ itself. In the computer science literature, this is sometimes called boot-strapping.
[1] K. Dutta, E. Ezra, and A. Ghosh. Two proofs for shallow packings. Discrete \& Computational Geometry, 56(4):910-939, 2016.
[2] N. H. Mustafa. A simple proof of the shallow packing lemma. Discrete \& Computational Geometry, 55(3):739-743, 2016.

Chapter 7

Epsilon Approximations

Definition 7.1. Given a set system (X, \mathcal{F}), an ϵ-approximation is a subset $A \subseteq X$ such that for any set $S \in \mathcal{F}$, we have

$$
\left|\frac{|S|}{|X|}-\frac{|S \cap A|}{|A|}\right| \leq \epsilon .
$$

7.1 Epsilon-Approximations via Halving

The main theorem we will prove in this section is:
Theorem 7.1. Let (X, \mathcal{F}) be a set system, $|X|=n$, with the property that

$$
\text { for any } Y \subseteq X, \quad|\mathcal{F}|_{Y} \mid=O\left(|Y|^{d}\right)
$$

Then there exists an ϵ-approximation for \mathcal{F} of size $O\left(\frac{d}{\epsilon^{2}} \log \frac{d}{\epsilon}\right)$.

Basic idea. Imagine that we could pick a set $R_{1} \subseteq X$ such that $\left|R_{1}\right|=\frac{n}{2}$ and R_{1} is also 'equally representative' of all the other sets in \mathcal{F}. Namely, R_{1} contains exactly half of the elements of each set of \mathcal{F} :

$$
\text { for all } S \in \mathcal{F}: \quad\left|R_{1} \cap S\right|=\frac{|S|}{2}
$$

Repeating the above step, say that we could pick $R_{2} \subseteq R_{1}$, with $\frac{\left|R_{1}\right|}{2}=\frac{n}{4}$ elements, such that $\left|R_{2} \cap S\right|=\frac{\left|R_{1} \cap S\right|}{2}=\frac{|S|}{4}$. See Figure 7.1. Continuing in this manner, let R_{i} be the set at the i-th iteration. Then we have

$$
\left|R_{i}\right|=\frac{n}{2^{i}}, \quad\left|R_{i} \cap S\right|=\frac{|S|}{2^{i}}, \quad \text { for all } S \in \mathcal{F}
$$

Figure 7.1: At each step, the total number of points halve; ideally, the number of points within each set-disks in this case-is also halved.

Then for any $S \in \mathcal{F}$, the proportion of points of S in any R_{i} will be equal to the proportion of points of S in X, namely

$$
\left|\frac{|S|}{|X|}-\frac{\left|S \cap R_{i}\right|}{\left|R_{i}\right|}\right|=\left|\frac{|S|}{n}-\frac{|S| / 2^{i}}{n / 2^{i}}\right|=0 .
$$

The problem is that, even at the first step, a set $R_{1} \subseteq X$ that contains $\frac{|X|}{2}$ points, and also exactly halves every set is not always possible. The accuracy of R_{1} will have to depend on the number of sets in \mathcal{F}. For example, for the complete set system $\mathcal{F}=2^{X}$, for any choice R_{1} of $\frac{n}{2}$ elements, there will be a set of $\frac{n}{2}$ elements in \mathcal{F}, namely the set $X \backslash R_{1}$, that will not share any points of R_{1}.

Thus one can only ask for the best $R_{1},\left|R_{1}\right|=\frac{n}{2}$, such that for all $S \in \mathcal{F},\left|R_{1} \cap S\right|$ is as close as possible to $\frac{|S|}{2}$, although necessarily as a function of n and $|\mathcal{F}|$. Not surprisingly, we will pick R_{1} randomly, by adding each element $p \in X$ to R_{1} with probability $\frac{1}{2}$. First, note that the expected number of elements picked into R_{1} is $\frac{n}{2}$. Not only that, but the expected number of elements picked from any fixed $S \in \mathcal{F}$ is also $\frac{|S|}{2}$. Of course that is unlikely to be true for all sets simultaneously ${ }^{\dagger}$.

The key to proving our main theorem will be a halving lemma, which states the existence of a set $R_{1},\left|R_{1}\right|=\frac{n}{2}$ such that:

$$
\text { for all } S \in \mathcal{F}: \quad\left|R_{1} \cap S\right|=\frac{|S|}{2} \pm O(\sqrt{|X| \ln |\mathcal{F}|})
$$

[^0]Set $R_{0}=X$, and using the halving lemma, we iteratively construct R_{i} from R_{i-1}, for $i \geq 1$. However, unlike earlier, errors accumulate with each iteration. As $R_{i}=\frac{n}{2^{i}}$, after i steps, a calculation shows that, for each $S \in \mathcal{F}$, we have

$$
\left|R_{i} \cap S\right|=\frac{|S|}{2^{i}} \pm \sum_{j=0}^{i-1} \frac{O\left(\sqrt{\left|R_{j}\right| \ln \left|R_{j}\right|^{d}}\right)}{2^{(i-1)-j}}=\frac{|S|}{2^{i}} \pm \frac{1}{2^{(i-1)}} \sum_{j=0}^{i-1} 2^{j} \cdot O\left(\sqrt{\left|R_{j}\right| \ln \left|R_{j}\right|^{d}}\right)
$$

The key here is in bounding the growth of the sum of errors. It turns out that the term 2^{j} dominates the error term, and so a calculation will show that the terms increase by a constant factor at each iteration. This gives an increasing geometric series, and so we have

$$
\left|R_{i} \cap S\right|=\frac{|S|}{2^{i}} \pm O\left(\sqrt{\left|R_{i}\right| \ln \left|R_{i}\right|^{d}}\right)
$$

Going to back ϵ-approximations, as $\left|R_{i}\right|=\frac{|X|}{2^{i}}$, we have

$$
\left|\frac{|S|}{2^{i}}-\left|S \cap R_{i}\right|\right|=O\left(\sqrt{\left|R_{i}\right| \ln \left|R_{i}\right|^{d}}\right) \quad \underset{\text { dividing by }\left|R_{i}\right|}{\Longrightarrow}\left|\frac{|S|}{|X|}-\frac{\left|S \cap R_{i}\right|}{\left|R_{i}\right|}\right|=O\left(\sqrt{\frac{\ln \left|R_{i}\right|^{d}}{\left|R_{i}\right|}}\right) .
$$

We now choose i to get this error to be at most ϵ. The reader can verify that if we set $i=\log \left(\frac{\epsilon^{2} n}{d \log \frac{d}{\epsilon}}\right), R_{i}$ will be an ϵ-approximation. The size of R_{i} is then $\frac{|X|}{2^{i}}=O\left(\frac{d}{\epsilon^{2}} \log \frac{d}{\epsilon}\right)$.

Proof of Main Theorem

We now turn to the formal proof of the main theorem. The precise statement of the halving claim is the following.

Lemma 7.1 (Halving lemma). Given a set system $(X, \mathcal{F}), X=\left\{p_{1}, \ldots, p_{n}\right\},|\mathcal{F}|=m$, there exists a set $R_{1} \subseteq X,\left|R_{1}\right|=\frac{n}{2}$, such that

$$
\text { for all } S \in \mathcal{F}, \quad\left|R_{1} \cap S\right|=\frac{|S|}{2} \pm 2 \sqrt{|X| \ln |\mathcal{F}|}
$$

Proof. We prove this claim by showing that a random R_{1} suffices with non-zero probability. Independently with probability $\frac{1}{2}$, assign a value ' +1 ' or ' -1 ' to each $p_{i} \in X$. Let X_{i} be the value assigned to p_{i}.

Set $\Delta=2 \sqrt{|X| \ln |\mathcal{F}|}$. Then by the Chernoff bound, we have

$$
\begin{equation*}
\text { for each } S \in \mathcal{F}, \quad \operatorname{Pr}\left[\sum_{p_{i} \in S} X_{i}>\Delta\right]<e^{-\frac{\Delta^{2}}{2|S|}}=e^{-\frac{\left(2 \sqrt{|X| \ln \mid \mathcal{F})^{2}}\right.}{2|S|}} \leq e^{-2 \ln |\mathcal{F}|}<\frac{1}{2|\mathcal{F}|}, \tag{7.1}
\end{equation*}
$$

for $|\mathcal{F}| \geq 2$. By the union bound, the probability that there exists a set in \mathcal{F} that fails to satisfy inequality (7.1) can be bounded as

$$
\sum_{S \in \mathcal{F}} \operatorname{Pr}\left[\sum_{p_{i} \in S} X_{i} \geq \Delta\right]<\sum_{S \in \mathcal{F}} \frac{1}{2|\mathcal{F}|}=\frac{1}{2}
$$

Similarly, the probability that there exists a set S with $\sum_{p_{i} \in S} X_{i} \leq-\Delta$ is less than $\frac{1}{2}$.
Thus for each set S of \mathcal{F}, the number of elements assigned ' +1 ' is equal, within an additive factor of Δ, to the elements assigned ' -1 '. Thus we can now take the elements of X assigned the value ' +1 ' as our required set R_{1}. We are done, except a minor technical detail: we need to pick exactly $\frac{n}{2}$ elements', which need not necessarily be true for either of ' +1 ' or '-1' valued elements. We wrap up these details next.

Fix any set $S \in \mathcal{F}$. Let $S^{+} \subseteq S$ be the elements with value +1 , and $S^{-}=S \backslash S^{+}$the elements with value -1 . For each set $S \in \mathcal{F}$, we have

$$
-\Delta \leq\left|S^{+}\right|-\left|S^{-}\right| \leq \Delta
$$

As $\left|S^{+}\right|+\left|S^{-}\right|=|S|$,

$$
\begin{aligned}
-\Delta \leq\left|S^{+}\right|-\left|S^{-}\right| \leq \Delta & \Longrightarrow-\Delta \leq 2\left|S^{+}\right|-|S| \leq \Delta \\
& \Longrightarrow \frac{|S|}{2}+\frac{\Delta}{2} \geq\left|S^{+}\right| \geq \frac{|S|}{2}-\frac{\Delta}{2} .
\end{aligned}
$$

Assuming w.l.o.g. that X is also a set in \mathcal{F}, and that there are at least $\frac{n}{2}$ elements assigned ' +1 '; then $\frac{n}{2} \leq\left|X^{+}\right| \leq \frac{n}{2}+\frac{\Delta}{2}$. By discarding at most $\frac{\Delta}{2}$ elements from X^{+}, we get the set R_{1} with $\frac{n}{2}$ elements. For each set $S \in \mathcal{F}$,

$$
\begin{aligned}
& \left|R_{1} \cap S\right| \geq\left|S^{+}\right|-\frac{\Delta}{2} \geq\left(\frac{|S|}{2}-\frac{\Delta}{2}\right)-\frac{\Delta}{2}=\frac{|S|}{2}-2 \sqrt{|X| \log |\mathcal{F}|} \\
& \left|R_{1} \cap S\right| \leq\left|S^{+}\right| \leq \frac{|S|}{2}+\frac{\Delta}{2} \leq \frac{|S|}{2}+2 \sqrt{|X| \log |\mathcal{F}|}
\end{aligned}
$$

We return to the main theorem:
Theorem 7.1. Let (X, \mathcal{F}) be a set system, $|X|=n$, with the property that

$$
\text { for any } Y \subseteq X, \quad|\mathcal{F}|_{Y} \mid=O\left(|Y|^{d}\right)
$$

Then there exists an ϵ-approximation for \mathcal{F} of size $O\left(\frac{d}{\epsilon^{2}} \log \frac{d}{\epsilon}\right)$.

[^1]Proof. Given (X, \mathcal{F}), let c be a constant such that for any $Y \subseteq X$, we have

$$
\left.|\mathcal{F}|_{Y}|\leq c \cdot| Y\right|^{d}
$$

We will iteratively compute R_{i}. Set the initial set $R_{0}=X$. Apply the halving lemma to (X, \mathcal{F}) to get a set $R_{1} \subset X,\left|R_{1}\right|=\frac{n}{2}$, such that

$$
\begin{equation*}
\text { for all } S \in \mathcal{F}: \quad\left|R_{1} \cap S\right|=\frac{|S|}{2} \pm 2 \sqrt{\left|R_{0}\right| \ln \left(c\left|R_{0}\right|^{d}\right)} \tag{7.2}
\end{equation*}
$$

Consider the set system \mathcal{F}_{1} derived from projecting \mathcal{F} to R_{1}, namely

$$
\mathcal{F}_{1}=\left.\mathcal{F}\right|_{R_{1}}=\left\{R_{1} \cap S: S \in \mathcal{F}\right\} .
$$

Then we have

$$
\left|\mathcal{F}_{1}\right| \leq c \cdot\left|R_{1}\right|^{d}=c \cdot\left(\frac{n}{2}\right)^{d} .
$$

Now apply the halving lemma, this time on $\left(R_{1}, \mathcal{F}_{1}\right)$, to get a set $R_{2} \subset R_{1},\left|R_{2}\right|=\frac{\left|R_{1}\right|}{2}=\frac{n}{4}$, such that for all $S \in \mathcal{F}$:

$$
\begin{aligned}
\left|R_{2} \cap S\right| & =\frac{\left|R_{1} \cap S\right|}{2} \pm 2 \sqrt{\left|R_{1}\right| \ln \left(c\left|\mathcal{F}_{1}\right|\right)} \\
& =\frac{\frac{|S|}{2} \pm 2 \sqrt{\left|R_{0}\right| \ln \left(c\left|R_{0}\right|^{d}\right)}}{2} \pm 2 \sqrt{\left|R_{1}\right| \ln \left(c\left|R_{1}\right|^{d}\right)} \quad \text { (here we used inequality (7.2)) } \\
& =\frac{|S|}{4} \pm 2 \sum_{j=0}^{1} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{1-j}}
\end{aligned}
$$

Continuing on, we get the following.
Claim 7.2.

$$
\left|R_{i} \cap S\right|=\frac{|S|}{2^{i}} \pm 2 \sum_{j=0}^{i-1} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{(i-1)-j}}
$$

Proof. Assume we have the set system $\left(R_{i-1}, \mathcal{F}_{i-1}=\left\{R_{i-1} \cap S: S \in \mathcal{F}\right\}\right)$, where

$$
\left|R_{i-1}\right|=\frac{n}{2^{i-1}}, \quad\left|\mathcal{F}_{i-1}\right| \leq c \cdot\left|R_{i-1}\right|^{d}
$$

Furthermore, by inductive hypothesis, assume that

$$
\left|R_{i-1} \cap S\right|=\frac{|S|}{2^{i-1}} \pm 2 \sum_{j=0}^{i-2} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{(i-2)-j}}
$$

Applying the halving lemma to $\left(R_{i-1}, \mathcal{F}_{i-1}\right)$, we get a set $R_{i},\left|R_{i}\right|=\frac{\left|R_{i-1}\right|}{2}=\frac{n}{2^{i}}$, with

$$
\left|R_{i} \cap S\right|=\frac{\left|R_{i-1} \cap S\right|}{2} \pm 2 \sqrt{\left|R_{i-1}\right| \ln \left(c\left|R_{i-1}\right|^{d}\right)}
$$

$$
\begin{aligned}
& =\frac{|S|}{2^{i}} \pm 2 \sum_{j=0}^{i-2} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{(i-1)-j}} \pm 2 \sqrt{\left|R_{i-1}\right| \ln \left(c\left|R_{i-1}\right|^{d}\right)} \\
& =\frac{|S|}{2^{i}} \pm 2 \sum_{j=0}^{i-1} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{(i-1)-j}}
\end{aligned}
$$

We bound the resulting error term:

$$
\begin{aligned}
2 \sum_{j=0}^{i-1} \frac{\sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}}{2^{(i-1)-j}} & =\frac{2}{2^{i-1}} \sum_{j=0}^{i-1} 2^{j} \sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)} \\
& \leq \frac{2}{2^{i-1}} \cdot c^{\prime} \cdot 2^{i-1} \sqrt{\left|R_{i}\right| \ln \left(c\left|R_{i}\right|^{d}\right)^{\dagger}}=2 c^{\prime} \cdot \sqrt{\left|R_{i}\right| \ln \left(c\left|R_{i}\right|^{d}\right)}
\end{aligned}
$$

where c^{\prime} is an absolute constant resulting from the geometric series.
Thus, at the i-th iteration, we have

$$
\begin{aligned}
\left|R_{i} \cap S\right| & =\frac{|S|}{2^{i}} \pm 2 c^{\prime} \sqrt{\left|R_{i}\right| \ln \left(c\left|R_{i}\right|^{d}\right)}, \\
& \underset{\text { dividing by }\left|R_{i}\right|}{\Longrightarrow}\left|\frac{\left|R_{i} \cap S\right|}{\left|R_{i}\right|}-\frac{|S|}{n}\right| \leq 2 c^{\prime} \sqrt{\frac{\ln \left(c\left|R_{i}\right|^{d}\right)}{\left|R_{i}\right|}} .
\end{aligned}
$$

We set the number of iterations t so that

$$
2 c^{\prime} \sqrt{\frac{\ln \left(c\left|R_{t}\right|^{d}\right)}{\left|R_{t}\right|}} \leq \epsilon
$$

The reader can verify that indeed this is true when $t=\log \left(\frac{\epsilon^{2} n}{d c_{1} \log \frac{d}{\epsilon}}\right)$, for a large-enough constant $c_{1} \geq 1$ (depending only on c and c^{\prime}).

Finally, the size of our approximation is

$$
\left|R_{t}\right|=\frac{n}{2^{t}}=\frac{n}{\frac{\epsilon^{2} n}{d c_{1} \log \frac{d}{\epsilon}}}=\frac{d c_{1} \log \frac{d}{\epsilon}}{\epsilon^{2}} .
$$

Bibliography and discussion. This connection between balanced colorings (discrepancy) and ϵ-approximations was discovered in [1].
${ }^{\dagger}$ Can be seen by a change of variables, from j to l. Set l such that $\left|R_{j}\right|=\frac{n}{2^{j}}=$ 2^{l}. Then $\sum_{j=0}^{i-1} 2^{j} \sqrt{\left|R_{j}\right| \ln \left(c\left|R_{j}\right|^{d}\right)}=n \sum_{l=\log n-(i-1)}^{\log n} \sqrt{\frac{\ln \left(c c^{l d}\right)}{2^{l}}}=O\left(n \sqrt{\frac{\ln \left(c\left(n / 2^{i-1}\right)^{d}\right)}{n / 2^{i-1}}}\right)=$ $O\left(2^{i-1} \sqrt{n / 2^{i-1} \ln \left(c\left(n / 2^{i-1}\right)^{d}\right)}\right)=O\left(2^{i-1} \sqrt{\left|R_{i-1}\right| \ln \left(c\left|R_{i-1}\right|^{d}\right)}\right)$.
[1] J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded VCdimension. Combinatorica, 13(4):455-466, 1993.

[^0]: ${ }^{\dagger}$ Take the complete set system example again.

[^1]: ${ }^{\dagger}$ This condition that $\left|R_{1}\right|$ be exactly equal to $\frac{n}{2}$ is not really necessary, but it simplifies the subsequent algebraic calculations.

