
4.4 Shallow Packings

“The highest activity a human being can attain is learning for understanding, because
to understand is to be free.”

Baruch Spinoza

As observed earlier, set systems (X,F) of VC-dimension d behave, in many respects, like
half-spaces or balls in Rd. For example, the number of sets in F is O (|X|)d. On the other
hand, given a set P of points in Rd, the number of subsets of P induced by half-spaces is
O
(
|P |d

)
. This section continues this correspondence through the lens of packing.

Given a set of P of n points in [0, n]d, if the distance between every pair of points of P is at
least δ, then |P | = O

((
n
δ

)d). The analogous abstract case then becomes:

Theorem 4.7. Given positive integers d and δ, let F =
{
S1, . . . , Sm

}
be a set system on a set

X of n elements, with VC-dim(F) ≤ d. Further assume that for every 1 ≤ i < j ≤ m, we
have

∣∣∆(Si, Sj)
∣∣ ≥ δ. Then |F| = O

(
(n/δ)d

)
.

Proof. From Lemma 4.3, we have

|F| ≤ 2 · |F|A| , where A ⊆ X is a uniform random sample of size at most
4dn

δ
.

The Primal Shatter Lemma 3.1 gives an upper-bound on |F|A|, in fact independent of the
specific choice of A. Thus

|F| ≤ 2 · |F|A| = O

((
e|A|
d

)d)
= O

((
4en

δ

)d)
.

? ? ?

Next, we present a packing statement for the case where each set of F further has size at
most k, for some integer k. Unsurprisingly, the number of sets in the packing F can then
be upper-bounded by the number of sets in the projection F|A of a certain size.

Recall the definition of shallow-cell complexity of a set system:

Definition 3.1. A set system (X,F) has shallow-cell complexity ϕ(·, ·) if for any integer k and
any subset Y ⊆ X, the number of sets in F|Y of size at most k is at most |Y | · ϕ

(
|Y |, k

)
.
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Theorem 4.8. Given positive integers k, d and δ, let F = {S1, . . . , Sm} be a set system on a
set X of n elements, and with shallow-cell complexity ϕ(·, ·) and VC-dim(F) ≤ d. Further
assume that

1. |Si| ≤ k for all i = 1 . . .m, and

2. |∆(Si, Sj)| ≥ δ for all 1 ≤ i < j ≤ m.

Then |F| ≤ 24dn

δ
· ϕ
(

4dn

δ
,
12dk

δ

)
.

Intuition. Pick each element p ∈ X into a sample R with probability p = 1
δ
. Let

F|R = {S ′i = Si ∩R : Si ∈ F}

be the projection of F onto R. We have E [|R|] = n
δ
, and for each Si ∈ F ,

E [|S ′i|] = E [|Si ∩R|] =
|Si|
δ
≤ k

δ
.

Furthermore, for any two indices i and j:

E
[
|∆(S ′i, S

′
j)|
]

=
|∆(Si, Sj)|

δ
≥ 1.

So, in expectation, F|R consists of sets of size at most k
δ

over a set of |R| = n
δ

elements.
As the symmetric difference between any pair of sets in F|R is at least one, the sets S ′i are
distinct and thus

|F| = |F|R| ≤
n

δ
· ϕ
(
n

δ
,
k

δ

)
.

We next give the formal proof.

? ? ?

Proof. Let A ⊆ X be a uniform random sample of size 4dn
δ
− 1. Note that E [|S ∩ A|] ≤ 4dk

δ

as |S| ≤ k for all S ∈ F . Define

F1 =

{
S ∈ F : |S ∩ A| > 3 · 4dk

δ

}
.

By Markov’s inequality, for any S ∈ F ,

Pr [S ∈ F1] = Pr

[
|S ∩ A| > 3 · 4dk

δ

]
≤ 1

3
.
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Thus

E [|F|A|] ≤ E [|F1|] + E [|(F \ F1)|A|]

≤
∑
S∈F

Pr [S ∈ F1] + |A| · ϕ
(
|A|, 3 · 4dk

δ

)

≤ |F|
3

+
4dn

δ
· ϕ
(

4dn

δ
,
12dk

δ

)
,

where the projection size of F \F1 to A is bounded by ϕ(·, ·). Now the bound follows from
applying Lemma 4.3:

|F| ≤ 2 · E [|F|A|] ≤ 2

( |F|
3

+
4dn

δ
· ϕ
(

4dn

δ
,
12dk

δ

))

=⇒ |F| ≤ 6 ·
(

4dn

δ
· ϕ
(

4dn

δ
,
12dk

δ

))
.

Bibliography and discussion. The shallow packing lemma for some geometric
set systems was first shown in [1]. The statement was then generalized, and the
proof simplified, in [2], whose presentation we have essentially followed here.
The technical trick in the proof, at first somewhat counter-intuitive, is to upper-
bound the desired quantity, |F|, by a function that involves |F| itself. In the
computer science literature, this is sometimes called boot-strapping.

[1] K. Dutta, E. Ezra, and A. Ghosh. Two proofs for shallow packings. Discrete & Computational
Geometry, 56(4):910–939, 2016.

[2] N. H. Mustafa. A simple proof of the shallow packing lemma. Discrete & Computational Geom-
etry, 55(3):739–743, 2016.
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Chapter 7

Epsilon Approximations

Definition 7.1. Given a set system (X,F), an ε-approximation is a subset A ⊆ X such that
for any set S ∈ F , we have ∣∣∣∣ |S||X| − |S ∩ A||A|

∣∣∣∣ ≤ ε.

7.1 Epsilon-Approximations via Halving

The main theorem we will prove in this section is:

Theorem 7.1. Let (X,F) be a set system, |X| = n, with the property that

for any Y ⊆ X, |F|Y | = O
(
|Y |d

)
.

Then there exists an ε-approximation for F of size O
(
d
ε2

log d
ε

)
.

Basic idea. Imagine that we could pick a set R1 ⊆ X such that |R1| = n
2

and R1 is also
‘equally representative’ of all the other sets in F . Namely, R1 contains exactly half of the
elements of each set of F :

for all S ∈ F : |R1 ∩ S| =
|S|
2
.

Repeating the above step, say that we could pick R2 ⊆ R1, with |R1|
2

= n
4

elements, such
that |R2 ∩ S| = |R1∩S|

2
= |S|

4
. See Figure 7.1. Continuing in this manner, let Ri be the set at

the i-th iteration. Then we have

|Ri| =
n

2i
, |Ri ∩ S| =

|S|
2i
, for all S ∈ F .



Figure 7.1: At each step, the total number of points halve; ideally, the number of points
within each set—disks in this case—is also halved.

Then for any S ∈ F , the proportion of points of S in any Ri will be equal to the proportion
of points of S in X, namely∣∣∣∣ |S||X| − |S ∩Ri|

|Ri|

∣∣∣∣ =

∣∣∣∣ |S|n − |S|/2in/2i

∣∣∣∣ = 0.

The problem is that, even at the first step, a set R1 ⊆ X that contains |X|
2

points, and also
exactly halves every set is not always possible. The accuracy of R1 will have to depend on
the number of sets in F . For example, for the complete set system F = 2X , for any choice
R1 of n

2
elements, there will be a set of n

2
elements in F , namely the set X \ R1, that will

not share any points of R1.

Thus one can only ask for the best R1, |R1| = n
2
, such that for all S ∈ F , |R1 ∩S| is as close

as possible to |S|
2

, although necessarily as a function of n and |F|. Not surprisingly, we
will pick R1 randomly, by adding each element p ∈ X to R1 with probability 1

2
. First, note

that the expected number of elements picked into R1 is n
2
. Not only that, but the expected

number of elements picked from any fixed S ∈ F is also |S|
2

. Of course that is unlikely to
be true for all sets simultaneously†.

? ? ?

The key to proving our main theorem will be a halving lemma, which states the existence
of a set R1, |R1| = n

2
such that:

for all S ∈ F : |R1 ∩ S| =
|S|
2
±O

(√
|X| ln |F|

)
.

†Take the complete set system example again.
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Set R0 = X, and using the halving lemma, we iteratively construct Ri from Ri−1, for i ≥ 1.
However, unlike earlier, errors accumulate with each iteration. As Ri = n

2i
, after i steps, a

calculation shows that, for each S ∈ F , we have

|Ri ∩ S| =
|S|
2i
±

i−1∑
j=0

O
(√
|Rj| ln |Rj|d

)
2(i−1)−j =

|S|
2i
± 1

2(i−1)

i−1∑
j=0

2j ·O
(√
|Rj| ln |Rj|d

)
.

The key here is in bounding the growth of the sum of errors. It turns out that the term
2j dominates the error term, and so a calculation will show that the terms increase by a
constant factor at each iteration. This gives an increasing geometric series, and so we have

|Ri ∩ S| =
|S|
2i
±O

(√
|Ri| ln |Ri|d

)
.

Going to back ε-approximations, as |Ri| = |X|
2i

, we have∣∣∣∣ |S|2i
− |S ∩Ri|

∣∣∣∣ = O
(√
|Ri| ln |Ri|d

)
=⇒

dividing by |Ri|

∣∣∣∣ |S||X| − |S ∩Ri|
|Ri|

∣∣∣∣ = O

(√
ln |Ri|d
|Ri|

)
.

We now choose i to get this error to be at most ε. The reader can verify that if we set
i = log

(
ε2n

d log d
ε

)
, Ri will be an ε-approximation. The size of Ri is then |X|

2i
= O

(
d
ε2

log d
ε

)
.

? ? ?

PROOF OF MAIN THEOREM

We now turn to the formal proof of the main theorem. The precise statement of the halving
claim is the following.

Lemma 7.1 (Halving lemma). Given a set system (X,F), X = {p1, . . . , pn}, |F| = m, there
exists a set R1 ⊆ X, |R1| = n

2
, such that

for all S ∈ F , |R1 ∩ S| =
|S|
2
± 2
√
|X| ln |F|.

Proof. We prove this claim by showing that a random R1 suffices with non-zero probability.
Independently with probability 1

2
, assign a value ‘+1’ or ‘-1’ to each pi ∈ X. Let Xi be the

value assigned to pi.

Set ∆ = 2
√
|X| ln |F|. Then by the Chernoff bound, we have

for each S ∈ F , Pr

[∑
pi∈S

Xi > ∆

]
< e−

∆2

2|S| = e−
(2
√
|X| ln |F|)

2

2|S| ≤ e−2 ln |F| <
1

2|F| , (7.1)
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for |F| ≥ 2. By the union bound, the probability that there exists a set in F that fails to
satisfy inequality (7.1) can be bounded as

∑
S∈F

Pr

[∑
pi∈S

Xi ≥ ∆

]
<
∑
S∈F

1

2|F| =
1

2
.

Similarly, the probability that there exists a set S with
∑

pi∈S Xi ≤ −∆ is less than 1
2
.

Thus for each set S of F , the number of elements assigned ‘+1’ is equal, within an additive
factor of ∆, to the elements assigned ‘-1’. Thus we can now take the elements ofX assigned
the value ‘+1’ as our required set R1. We are done, except a minor technical detail: we
need to pick exactly n

2
elements†, which need not necessarily be true for either of ‘+1’ or

‘-1’ valued elements. We wrap up these details next.

Fix any set S ∈ F . Let S+ ⊆ S be the elements with value +1, and S− = S \ S+ the
elements with value −1. For each set S ∈ F , we have

−∆ ≤ |S+| − |S−| ≤ ∆.

As |S+|+ |S−| = |S|,

−∆ ≤ |S+| − |S−| ≤ ∆ =⇒ −∆ ≤ 2|S+| − |S| ≤ ∆

=⇒ |S|
2

+
∆

2
≥
∣∣S+

∣∣ ≥ |S|
2
− ∆

2
.

Assuming w.l.o.g. that X is also a set in F , and that there are at least n
2

elements assigned
‘+1’; then n

2
≤ |X+| ≤ n

2
+ ∆

2
. By discarding at most ∆

2
elements from X+, we get the set

R1 with n
2

elements. For each set S ∈ F ,

|R1 ∩ S| ≥
∣∣S+

∣∣− ∆

2
≥
( |S|

2
− ∆

2

)
− ∆

2
=
|S|
2
− 2
√
|X| log |F|.

|R1 ∩ S| ≤
∣∣S+

∣∣ ≤ |S|
2

+
∆

2
≤ |S|

2
+ 2
√
|X| log |F|.

We return to the main theorem:

Theorem 7.1. Let (X,F) be a set system, |X| = n, with the property that

for any Y ⊆ X, |F|Y | = O
(
|Y |d

)
.

Then there exists an ε-approximation for F of size O
(
d
ε2

log d
ε

)
.

†This condition that |R1| be exactly equal to n
2 is not really necessary, but it simplifies the subsequent alge-

braic calculations.
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Proof. Given (X,F), let c be a constant such that for any Y ⊆ X, we have

|F|Y | ≤ c · |Y |d.

We will iteratively compute Ri. Set the initial set R0 = X. Apply the halving lemma to
(X,F) to get a set R1 ⊂ X, |R1| = n

2
, such that

for all S ∈ F : |R1 ∩ S| =
|S|
2
± 2
√
|R0| ln (c|R0|d). (7.2)

Consider the set system F1 derived from projecting F to R1, namely

F1 = F|R1 = {R1 ∩ S : S ∈ F} .

Then we have
|F1| ≤ c · |R1|d = c ·

(n
2

)d
.

Now apply the halving lemma, this time on (R1,F1), to get a set R2 ⊂ R1, |R2| = |R1|
2

= n
4
,

such that for all S ∈ F :

|R2 ∩ S| =
|R1 ∩ S|

2
± 2
√
|R1| ln (c |F1|)

=
|S|
2
± 2
√
|R0| ln (c|R0|d)

2
± 2
√
|R1| ln (c|R1|d) (here we used inequality (7.2))

=
|S|
4
± 2

1∑
j=0

√
|Rj| ln (c|Rj|d)

21−j .

Continuing on, we get the following.

Claim 7.2.

|Ri ∩ S| =
|S|
2i
± 2

i−1∑
j=0

√
|Rj| ln (c|Rj|d)

2(i−1)−j .

Proof. Assume we have the set system (Ri−1,Fi−1 = {Ri−1 ∩ S : S ∈ F}) , where

|Ri−1| =
n

2i−1
, |Fi−1| ≤ c · |Ri−1|d .

Furthermore, by inductive hypothesis, assume that

|Ri−1 ∩ S| =
|S|
2i−1
± 2

i−2∑
j=0

√
|Rj| ln (c|Rj|d)

2(i−2)−j .

Applying the halving lemma to (Ri−1,Fi−1), we get a set Ri, |Ri| = |Ri−1|
2

= n
2i

, with

|Ri ∩ S| =
|Ri−1 ∩ S|

2
± 2
√
|Ri−1| ln (c|Ri−1|d)
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=
|S|
2i
± 2

i−2∑
j=0

√
|Rj| ln (c|Rj|d)

2(i−1)−j ± 2
√
|Ri−1| ln (c|Ri−1|d)

=
|S|
2i
± 2

i−1∑
j=0

√
|Rj| ln (c|Rj|d)

2(i−1)−j .

We bound the resulting error term:

2
i−1∑
j=0

√
|Rj| ln (c|Rj|d)

2(i−1)−j =
2

2i−1

i−1∑
j=0

2j
√
|Rj| ln (c|Rj|d)

≤ 2

2i−1
· c′ · 2i−1

√
|Ri| ln (c|Ri|d)† = 2c′ ·

√
|Ri| ln (c|Ri|d),

where c′ is an absolute constant resulting from the geometric series.

Thus, at the i-th iteration, we have

|Ri ∩ S| =
|S|
2i
± 2c′

√
|Ri| ln

(
c |Ri|d

)
,

=⇒
dividing by |Ri|

∣∣∣∣ |Ri ∩ S|
|Ri|

− |S|
n

∣∣∣∣ ≤ 2c′

√√√√ ln
(
c |Ri|d

)
|Ri|

.

We set the number of iterations t so that

2c′

√√√√ ln
(
c |Rt|d

)
|Rt|

≤ ε.

The reader can verify that indeed this is true when t = log
(

ε2n
dc1 log d

ε

)
, for a large-enough

constant c1 ≥ 1 (depending only on c and c′).

Finally, the size of our approximation is

|Rt| =
n

2t
=

n
ε2n

dc1 log d
ε

=
dc1 log d

ε

ε2
.

Bibliography and discussion. This connection between balanced colorings (dis-
crepancy) and ε-approximations was discovered in [1].

†Can be seen by a change of variables, from j to l. Set l such that |Rj | = n
2j =

2l. Then
∑i−1
j=0 2j

√
|Rj | ln (c|Rj |d) = n

∑logn
l=logn−(i−1)

√
ln(c2ld)

2l
= O

(
n
√

ln(c(n/2i−1)d)
n/2i−1

)
=

O
(

2i−1
√
n/2i−1 ln (c(n/2i−1)d)

)
= O

(
2i−1

√
|Ri−1| ln (c|Ri−1|d)

)
.
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