
3.1 VC dimension

“Very little [of mathematics] is easily accessible. But I think a lot more of it can be
explained so that a lot more people understand it. On the level we’re talking about. I
like to try to make mathematics easy, not to make it hard. I think there is a tendency
among mathematicians to try to make it hard. I try to combat that when I see people
wrap up their mathematics in formal fancy theories that make it less accessible.”

William Thurston

Let P be a set of n points in the plane, and let D be the primal set system on P induced
by disks; namely S ∈ D if and only if there exists a disk D such that S = D ∩ P . A key
fact regarding D is that |D| = O(n3). This is a consequence of the fact that disks are ‘fixed’
by three points, namely that for any set Y of three points in the plane, there exists a disk
D containing exactly the points of Y on its boundary. In fact, this is true in an ‘hereditary’
manner: for any set P ′ ⊆ P , the number of subsets of P ′ induced by disks is O (|P ′|3). The
key fact here is that this bound depends polynomially and only on the size of P ′.

We now recast this property in purely combinatorial terms. Let (X,F) be an abstract set
system. The property stated above, of the number of sets induced on any subset of P ′ by
disks, can be stated combinatorially as the number of subsets of X that can be obtained by
intersection with sets of F . Formally, define the projection of F onto any Y ⊆ X as the set
system

F|Y = {Y ∩ S : S ∈ F} .
Consider again the set system D induced by disks, and let Y be any subset of P . D|Y con-
sists of all subsets Y ′ ⊆ Y which can be gotten by intersection of Y with a disk, regardless
of the remaining points of P \ Y .

Just as the bound on the number of induced subsets by disks is a by-product of the fact
that a disk is ‘fixed’ by three points, one can derive a bound on the size of the projection
F|Y for any Y ⊆ X by assuming that the set system is of limited ‘expressiveness’ with
respect to constant-sized subsets. It is not clear how to generalize the property of a disk
being ‘fixed’ by three points to abstract set systems. The idea here is to note that a disk D
passing through a set Q = {p, q, r} of three points implies that, by slightly shifting D, one
can obtain all subsets—{p}, {q}, {r}, {p, q}, {p, r}, {q, r}—via intersection with disks in the
plane.

This is the property that will be abstracted:

The VC dimension of a set system (X,F), denoted by VC-dim(F), is the size of
the largest subset Y of X for which we have |F|Y | = 2|Y |. In such case we say
that Y is shattered by F .

Here is the key statement, whose proof is given a bit later, that makes VC dimension such
a useful parameter of set system complexity, and justifies the earlier analogy of such set
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systems with those induced by geometric objects.

Lemma 3.1 (Primal shatter lemma). Given a set system F on X with VC-dim(F) ≤ d, and
any Y ⊆ X, ∣∣F|Y ∣∣ ≤ d∑

i=0

(|Y |
i

)
≤
(
e|Y |
d

)d
= O

(
|Y |d

)
.

Note that the other direction is true as well—if for each Y ⊆ X we have |F|Y | = O
(
|Y |d

)
,

then the VC dimension of F cannot be too large.

Lemma 3.2. Given a set system (X,F) and a constant c such that

for any Y ⊆ X, we have |F|Y | ≤
( |Y |

c

)d
,

then VC-dim(F) ≤ 2d · log d
c
.

Proof. Let t = VC-dim(F) and Y ⊆ X be any set realizing the VC-dimension of F—i.e.,
|Y | = t and |F|Y | = 2|Y |. Then we have

2t = |F|Y | ≤
( |Y |

c

)d
=

(
t

c

)d
=⇒ t ≤ d · log

t

c
. (3.1)

Our goal is to upper-bound t = VC-dim(F); however there does not exist a closed-form
bound for t in the above expression. Applying inequality (3.1) repeatedly, one gets

t ≤ d · log
t

c

≤ d · log

(
d log t

c

c

)
= d log

d

c
+ d log log

t

c

≤ d log
d

c
+ d log log

(
d log t

c

c

)
= d log

d

c
+ d log log

d

c
+ d log log log

t

c
.

Now we use the fact that the expression

log x+ log log x+ log log log x+ · · ·

can be upper-bounded by a geometric series, and so is at most 2 log x. This implies that

t ≤ d

(
log

d

c
+ log log

d

c
+ log log log

d

c
+ · · ·

)
≤ 2d · log

d

c
.

It is not hard to see that most geometric set systems have small VC dimension. For example,
the primal set system induced by half-spaces in Rd has VC dimension d+ 1.
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Lemma 3.3. Let H be the family of all half-spaces in Rd. Then we have VC-dim(H) = d+ 1.

Proof. Clearly VC-dim(H) ≥ d + 1, as (d + 1) points at the vertices of a simplex can be
shattered by H. On the other hand, apply Radon’s lemma to any set P of d + 2 points in
Rd to get a partition of P into P1 and P2 such that conv(P1) intersects conv(P2). Then P

cannot be shattered, as P1 and P2 cannot be separated by half-spaces.

Lemma 3.4. Let B be the family of all balls in Rd. Then we have VC-dim(B) = d+ 1.

Proof. Assume that a set of points P in Rd is shattered by the primal set system induced
by balls. Then for any Q ⊆ P , there exists a ball B with Q = B ∩ P , and a ball B′ with
P \Q = B′ ∩ P . Then the hyperplane passing through B ∩B′ (or simply separating B and
B′ if the two balls are disjoint) separates Q from P \Q. Thus if a set of points are shattered
by the primal set system induced by balls in Rd, then they are shattered by the primal set
system induced by half-spaces in Rd, and we’re done by the bound on VC-dimension for
half-spaces.

More generally, primal set systems induced by polynomial inequalities can be realized,
using Veronese maps, by primal set systems induced by half-spaces in some higher di-
mension. Formally, identify each d-variate polynomial f(x1, . . . , xd) with its induced set
Sf =

{
p ∈ Rd : f(p) ≥ 0

}
. Then Veronese maps imply the following.

Lemma 3.5. Let Rd,D be a primal set system induced by all d-variable polynomials over Rd

of degree at most D. Then VC-dim (Rd,D) ≤
(
d+D
d

)
.

We next present two basic theorems on set systems with bounded VC dimension.

PRIMAL SHATTER LEMMA

We return to the proof of the lemma stated earlier:

Lemma 3.1 (Primal shatter lemma). Given a set system F on X with VC-dim(F) ≤ d, and
any Y ⊆ X, ∣∣F|Y ∣∣ ≤ d∑

i=0

(|Y |
i

)
≤
(
e|Y |
d

)d
= O

(
|Y |d

)
.

The proof that we present uses an operation on set systems, called shifting, which is applied
repeatedly to a given set system to get a ‘simpler’ set system.

Given a set system F = {S1, . . . , Sm} on the set X, and any element a ∈ X, one
can derive another system Fa = {S ′1, . . . , S ′m} from F by shifting F with a—by
removing the element a from all sets as long as that does not create duplicate
sets.
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For each set Si ∈ F , the set S ′i derived by shifting with a is

S ′i =

{
Si if Si \ {a} ∈ F ,
Si \ {a} otherwise.

Let F = {S1, . . . , Sm} be the original set system and Fa = {S ′1, . . . , S ′m} be the set system
shifted with a ∈ X. There are two key features of this operation. First, that |F| = |Fa|;
this follows immediately from the definition of shifting. Second, shifting does not increase
the VC dimension of the set system, as we prove now.

Lemma 3.6. Given a set system (X,F) and any a ∈ X, we have VC-dim(Fa) ≤ VC-dim(F).

Proof. Fix a set Y ⊆ X that is shattered by Fa. We must show that then it is also shattered
by F . If a /∈ Y , then the intersections Si ∩ Y and S ′i ∩ Y are identical, and the statement
follows immediately. Thus assume a ∈ Y .

Fix any set B ⊆ Y . We show that if B can be realized using a set of Fa, then it can also be
realized using a set of F . So let S ′i ∈ Fa be such that B = Y ∩ S ′i. We now exhibit a set

a

Y

S′
i

S′
j

S′
k

B

Sk ∈ F such that B = Y ∩ Sk.
There are two cases.

a ∈ B. As B = Y ∩ S ′i, a ∈ S ′i and so the set Si
must not have been shifted. Then Si = S ′i and
B = Y ∩ Si.

a /∈ B. Then a /∈ S ′i, but now Si need not be equal
to S ′i, as a could have been in Si, in which case
Y ∩ Si would contain the additional element
a. See the figure. Crucially, as Y is shattered
by Fa, there exists some other set S ′j such that
B ∪ {a} = Y ∩ S ′j. Furthermore, the set Sk = S ′j \ {a} must be in F—otherwise we
would have shifted S ′j. And so B = Y ∩ Sk.

We should remark here that in the above argument, to show that any fixed B that can be
realized using a set of Fa can also be realized using a set of F , we needed to use the fact
that Y was shattered by Fa. Simply the fact that an individual B can be realized by a set
of Fa is not sufficient.

Proof of Primal Shatter Lemma. Repeatedly apply shifting on F|Y with any element of Y ;
let F ′|Y be the resulting set system where shifting does not change any set. By Lemma 3.6,
the VC dimension of F ′|Y is at most d.
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Observe that F ′|Y is downwards closed: if A ∈ F ′|Y and B ⊆ A, then B ∈ F ′|Y . Thus the
largest cardinality of a set in F ′|Y is d. Now the proof follows by summing up the sets in
F ′|Y by their sizes:

|F|Y | = |F ′|Y | ≤
d∑
i=0

(|Y |
i

)
.

UNIT DISTANCE GRAPHS

We give another example of the shifting technique applied to set systems of bounded VC
dimension. Define the symmetric difference of two sets S, S ′ to be

∆ (S, S ′) = (S \ S ′)
⋃

(S ′ \ S) .

Also define the unit distance graph on a set system as

Given a set system F = {S1, . . . , Sm} on X, the unit distance graph GU(F) =

(F , EF) on the vertex set F has the set of edges EF such that {Si, Sj} ∈ EF if and
only if |∆(Si, Sj)| = 1.

Lemma 3.7. Given a set system F = {S1, . . . , Sm} on X, let GU(F) = (F , EF) be its unit
distance graph. If VC-dim(F) ≤ d, then |EF | ≤ d · |F|.

Proof. Repeatedly shift F with elements of X, and let F ′ be the resulting set system where
shifting does not change any set. We will show that shifting does not decrease the number
of edges in the unit distance graph. In particular,

1. F ′ is downwards closed,

2. |F| = |F ′|,

3. VC-dim(F ′) ≤ VC-dim(F), and

4. |EF ′| ≥ |EF |.

Assuming these four facts (the first three follow from the earlier proof), we can finish the
proof. Charge each edge e ∈ EF ′ to the bigger of the two sets of F ′ representing the two
vertices of e. As F ′ is downwards closed, each set S ′ ∈ F ′ has precisely |S ′| edges in EF ′
charged to it, namely all the edges between S ′ and each subset of S ′ of size |S ′| − 1. As
before, the largest set in F ′ has size at most d, and thus each set of F ′ gets charged at most
d edges. Thus we have

|EF ′| ≤ d|F ′| = d|F|.
Assuming fact 4., we can conclude that |EF | ≤ |EF ′ | ≤ d|F|.
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It remains to show |EF | ≤ |EFa | for any a ∈ X, where Fa is the set system obtained by
shifting F with a.

Consider an edge {S, S1} ∈ EF , defined by a set S ∈ F and another set S1 =

S ∪ {x}, where x ∈ X.

How can this edge not be present in the unit distance graph of Fa? If a /∈ S, then clearly
both sets S, S1 are unaffected—either x 6= a and then both S, S1 are unaffected by shifting,
or x = a, in which case S1 will not be shifted. Thus the edge remains in EFa.

Thus we can assume that a ∈ S. If the sets S and S1 both get shifted by a, or both do not
get shifted by a, the edge remains in EFa. Thus precisely one of the sets gets shifted.

First assume S gets shifted to S ′ by a, while the shifted set S ′1 of S1 remains unchanged.
This implies that the set S2 = S1 \ {a} is already in F ; see figure. The edge between

S
S1 = S ∪ {x}

S′ = S \ {a}
S′
1 = S ∪ {x}

S2 = S ∪ {x} \ {a}

S′
2 = S ∪ {x} \ {a}

F

Fa

S ′ and S ′1 is no longer present in EFa; however, it
is replaced by the new edge between S ′ and S ′2.
Since for each pair S ∈ F and x ∈ X, we have re-
placed the edge {S, S ∪ {x}} in EF with the edge
{S ′, S ∪ {x} \ {a}} in EFa, the replacements are all
distinct.

The remaining case—when S does not get shifted
while S ∪ {x} does—is similar. Then S \ {a} already exists in F and thus in Fa. Therefore
the edge {S, S ∪ {x}} in EF gets replaced by the edge {S \ {a}, S ∪ {x} \ {a}} in EFa.

This concludes the proof.

Bibliography and discussion. The use of the shifting technique to prove these
theorems is folklore. See [1] for a survey on this technique.

[1] P. Frankl. The shifting technique in extremal set theory. London Math. Soc. Lecture Note Ser.,
123:81–110, 1987.
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4.3 Combinatorial Set Systems

“[T]he main object of physical science is not the provision of pictures, but is the formu-
lation of laws governing phenomena and the application of these laws to the discovery
of new phenomena. If a picture exists, so much the better; but whether a picture exists
or not is a matter of only secondary importance. In the case of atomic phenomena
no picture can be expected to exist in the usual sense of the word “picture,” by which
is meant a model functioning essentially on classical lines. One may however extend
the meaning of the word “picture” to include any way of looking at the fundamental
laws which makes their self-consistency obvious. With this extension, one may grad-
ually acquire a picture of atomic phenomena by becoming familiar with the laws of
quantum theory.”

Paul Dirac

Given a set P of points lying in the cube [0, n]d with the property that d(pi, pj) ≥ δ for every
pair of points pi, pj ∈ P , it is not hard to show that then |P | = O

(
(n
δ
)d
)
: as the |P | balls of

radius δ
2

centered at each p ∈ P must be pairwise disjoint, a volume argument implies that

|P | ·
(
δ

2

)d
≤ (n+ δ)d .

This is an example of a geometric packing argument, and this section deals with an impor-
tant lemma which generalizes packing properties of geometric objects to that of abstract
set systems.

The geometric notion of packing relies on an underlying notion of ‘distance’, and broadly
the packing question concerns the number of geometric objects that can exist together
while being pair-wise ‘distant’ from each other. In moving to purely combinatorial set sys-
tems, the notion of distance between points is replaced, in a natural way, by the cardinality
of the set symmetric difference between sets.

Given two finite sets X, Y , the set symmetric difference of X and Y is defined to be

∆ (X, Y ) = (X \ Y ) ∪ (Y \X) .

The main result of this section is the following.

Lemma 4.3 (Packing Lemma). Let F = {S1, . . . , Sm} be a set system on a set X of n ele-
ments, and let d, δ > 0 be integers such that VC-dim(F) = d and for every 1 ≤ i < j ≤ m, we
have |∆(Si, Sj)| ≥ δ. Then

|F| ≤ 2 · E
[
|F|A|

]
,

where A is a subset of size s = 4dn
δ
− 1 picked uniformly at random from X.
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We first give an intuition for the proof. Consider a set system F on a set X of n elements,
such that for every S, S ′ ∈ F , we have |∆(S, S ′)| ≥ δ. Now construct a random sample
A by picking each element of X independently with probability 1

δ
, and consider the set

system F|A. We would like to argue that each set of F maps to a distinct set of F|A, and
so |F| = E [|F|A|], as desired.

However, it could be that two sets of F map to the same set of F|A. This happens precisely
when no element in the symmetric difference of the two sets is picked in A. As we picked
each element independently with probability 1

δ
, and the symmetric difference of every pair

of sets is at least δ, in expectation we will pick at least one element from the symmetric
difference of these two sets, and thus they will not be ‘merged’ in F|A.

This entire line of thinking was ‘in expectation’, and the task now is to convert this to a
formal proof.

? ? ?

PROOF OF THE PACKING LEMMA

Proof of Lemma 4.3. The proof is an application of the Clarkson-Shor technique.

For a random sample R of size s = Θ
(
n
δ

)
, we will count, in two ways, the number of

pairs of sets in F that end up at unit symmetric difference in F|R. On one hand, an upper-
bound will be provided by the fact that there are only O (|F|R|) pairs of sets at unit distance
symmetric difference in F|R†. On the other hand, for every pair of sets Si, Sj ∈ F , there
is some positive probability of the pair {Si ∩R, Sj ∩R} ending up as a unit symmetric
difference pair in GU (F|R), and so, in expectation, a large proportion of such pairs end up
in F|R. Putting these bounds together implies an upper-bound on |F|.
However, there are two technical issues that must be overcome:

• We intend to count the number of pairs of sets in F that are at unit symmetric
difference. However, while a set S ∈ F maps to the set S ∩R ∈ F|R, each set of F|R
potentially corresponds to many sets of F . Therefore one has to look at the weighted
unit-distance graph on the sets of F|R. First define

for S ′ ∈ F|R, the weight w(S ′) is the number of sets of F mapping to S ′.

Then instead of counting the number of edges in the unit distance graph GU(F|R),
we would like to add up the weights of edges, where each {S ′i, S ′j} ∈ E is assigned

†Recall the unit-distance graph, denoted by GU (F|R), on the vertex set F|R: two sets of F|R are connected
if and only if their symmetric difference has size precisely one. Lemma 3.7 gives a linear bound on the
number of edges in such a graph.
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the weight w({S ′i, S ′j}) = w(S ′i) ·w(S ′j). In fact, a technical trick we will use here is to
instead define

w
({
S ′i, S

′
j

})
= min

{
w (S ′i) , w

(
S ′j
)}
.

This will simplify the calculations without significant change—in any case, for any
a, b > 0, we have†

min {a, b} · (a+ b)

2
≤ ab ≤ min {a, b} · (a+ b) . (4.3)

• We need to compute, for any two sets Si, Sj ∈ F , the probability that
{
Si∩R, Sj ∩R

}
ends up as a unit-distance pair in GU(F|R). This happens if and only if exactly one
element of ∆(Si, Sj) is picked intoR; in other words, this depends only on |∆(Si, Sj)|.
This is a difficult computation.

However, given that we are only interested in the sum of these
(|F|

2

)
probabilities—

namely the expected number of pairs at unit-distance in GU(F|R)—a clever idea is
to further use double-counting to count this sum in a uniform way. Rather than
summing up over pairs of sets in F , we count, for the i-th element of R, the expected
number of pairs at unit distance due to that element. By symmetry, this value is the
same for all elements of R. So conditioned on the first |R| − 1 elements of R, we
need to compute the expected number of pairs of sets that are put at unit distance
by the |R|-th random element. This is an easier computation.

Having covered the main ideas, it remains to do the precise calculations.

? ? ?

Pick a random set R of size s = 4dn
δ

fromX (without repetitions). LetGU(F|R) = (F|R, ER)

be the unit symmetric distance graph on F|R. For each S ′ ∈ F|R, define w(S ′) to be the
number of sets of F mapping to S ′:

w(S ′) =
∣∣ {S ∈ F : S ∩R = S ′}

∣∣.
Define the weight of an edge

{
S ′i, S

′
j

}
∈ ER as

w
({
S ′i, S

′
j

})
= min

{
w(S ′i), w(S ′j)

}
.

Let W =
∑

e∈ER w(e) be the total weight of all the edges. As outlined earlier, we will count
E[W ] in two ways. Recall that m = |F|.
First, the upper-bound on W .

†Assume a ≤ b. Then it is equivalent to the fact that a
2 + b

2 ≤ b ≤ a+ b.
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Claim 4.4.
W ≤ 2d ·m.

Proof. By Lemma 3.7, |ER| ≤ d · |F|R|. Thus there exists a vertex S ′ ∈ F|R of degree at
most 2d†. By the definition of the edge weights, the weight of each edge incident to S ′ is at
most w(S ′). Thus the sum of the weight of all the edges adjacent to S ′ is at most 2d ·w(S ′).

Remove S ′ from GU(F|R). The remaining graph is still a unit distance graph on |F|R| − 1

vertices; thus by applying Lemma 3.7 again, it has at most d · (|F|R| − 1) edges and so we
can inductively bound the weight of edges in the remaining graph. Thus the total weight
of edges can be upper-bounded as

2d
∑

S′∈F |R

w(S ′) = 2d ·m.

Next, the lower-bound on W .

Claim 4.5.
E [W ] ≥ 4dm− 4dE [|F|R|] .

Proof. Imagine picking R by first choosing randomly a set A of s − 1 = 4dn
δ
− 1 elements,

and then choosing the last element uniformly from X \ R. Let W1 be the weight of the
edges in GU(F|R) where the element is the symmetric difference. By symmetry, we have
E[W ] = s · E[W1].

To compute E[W1], assume we have picked the first s − 1 vertices, say the set Y . In fact,
we will show something even stronger: regardless of the choice of the first s − 1 vertices,
we will lower-bound the expected weight due to the symmetric difference being the last
random element picked. So, conditioned on any fixed choice of the first s− 1 vertices, we
show the following.

Claim 4.6.
E
[
W1 | A = Y

]
≥ δ

n

(
m− |F|Y |

)
.

Proof. Note that the expectation here is only over the choice of the last element.

F|Y contains the projected sets of F after having picked the first s− 1 elements as the set
Y and projected our set system F into Y .

Next we pick a random element a from X \ Y and set R = Y ∪ {a}. Then each set in F|Y
could be split into two sets—projections of those sets of F that contained a, and those that

†∑
S′∈F|R deg(S′) = 2|ER| ≤ 2d|F|R|, which implies that there exists a S′ ∈ F|R with deg(S′) ≤ 2d|F|R|

|F|R| .
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did not. These two projected sets are now at unit distance apart in F|R (with the element
a being their symmetric difference), and it is their total weight W1 that we have to bound.

Consider a set Q ∈ F|Y , and let FQ be the sets of F mapping to Q—namely their projection
onto A is Q. Let b = |FQ|.
Once the choice of a has been made, Q will be split into two sets, those sets containing
that choice of a—say there are b1 of these, and those sets not containing a, say b2 = b− b1

in number. The weight of the edge between these two sets will be min {b1, b2}. We next
compute this expected weight.

For each pair of fixed sets in FQ, the probability that the randomly chosen last element a
will cause their symmetric difference in R to be 1 is at least δ

n−(s−1)
≥ δ

n
. Therefore the

expected contribution of each pair of sets in FQ to b1b2 is at least δ
n
. Noting that b = b1 + b2

is fixed independent of the choice of a, summing up over all pairs of sets in FQ, we can
lower-bound the expected contribution of the sets in FQ to W1 by

E [min{b1, b2}] ≥ E

[
b1b2

b1 + b2

]
(by inequality 4.3)

=
E[b1b2]

b1 + b2

(as b = b1 + b2 is a constant)

=

∑
S,S′∈FQ Pr [S and S ′ differ on a]

b

≥
∑

S,S′∈FQ δ/n

b

=
|FQ| (|FQ| − 1) · δ/n

|FQ|
=
δ

n
· (|FQ| − 1) .

Summing up over all sets of F|Y ,

E
[
W1 | A = Y

]
≥
∑
Q∈F|Y

δ

n

(
|FQ| − 1

)
=
δ

n

 ∑
Q∈F|Y

|FQ| −
∑
Q∈F|Y

1

 =
δ

n

(
m− |F|Y |

)
.

Finally we compute a lower-bound for E[W ]:

E[W ] = s · E[W1] = s ·
∑
Y⊆X
|Y |=s−1

E
[
W1|A = Y

]
· Pr[A = Y ]

≥ s ·
∑
Y⊆X
|Y |=s−1

δ

n

(
m− |F|Y |

)
· Pr

[
A = Y

]
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=
sδ

n

m ∑
Y⊆X
|Y |=s−1

Pr [A = Y ]−
∑
Y⊆X
|Y |=s−1

|F|Y | · Pr [A = Y ]


=
sδ

n

(
m− E

[
|F|A|

])
= 4dm− 4dE

[
|F|A|

]
,

where the last equality follows from s = 4dn
δ

.

Putting the upper- and lower- bounds on E[W ], we get

2dm ≥ 4dm− 4dE
[
|F|A|

]
, implying that m ≤ 2 E

[
|F|A|

]
.

This finishes the proof of Lemma 4.3.

Bibliography and discussion. The packing lemma is from Haussler [1], who
gave the proof for the specific case of set systems with bounded VC dimension.
The more general bound in terms of projection sizes is from Mustafa [2].

[1] D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-
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