2.2 Partitioning Segments in \mathbb{R}^{2}

The main theorem is the following.
Theorem 2.3. Let S be a set of n line segments in the plane with m intersections, in general position. Let $r \geq 1$ be a given parameter. Then there exists a partition of \mathbb{R}^{2} into $O\left(r+\frac{m r^{2}}{n^{2}}\right)$ triangles such that the interior of any triangle in this partition intersects at most $\frac{n}{r}$ segments of S.

Observe that this is asymptotically optimal. Given S, assume that there exists a partition of \mathbb{R}^{2} with t triangles such that the interior of each triangle intersects at most $\frac{n}{r}$ segments of S. First, as there are n lines, we have $t \geq r$. Next, as the interior of each triangle can contain at most $\binom{\frac{n}{r}}{2}=O\left(\frac{n^{2}}{r^{2}}\right)$ intersection points, it must be that ${ }^{\dagger}$

$$
m \leq t \cdot O\left(\frac{n^{2}}{r^{2}}\right) \quad \Longrightarrow \quad t=\Omega\left(\frac{m r^{2}}{n^{2}}\right)
$$

For the rest of this section, S will denote a set of n line segments in the plane in general position. For each $R \subseteq S$, let $I(R)$ denote the set of intersections between segments of R, and set $m_{R}=|I(R)|$.

We first briefly review a common way to partition space, the so-called trapezoidal decompositions.

Trapezoidal decompositions. Let S be a set of n line segments in the plane, and \mathcal{U} a large-enough rectangle containing all the segments of S in its interior.

Then given any set $R \subseteq S$ of segments, partition \mathcal{U} with respect to R as follows:
From each of the $2|R|$ endpoints of segments in R and each of the m_{R} intersection points between two segments of R, trace a vertical ray upwards and downwards until it hits another segment (or the bounding rectangle \mathcal{U}). The union of all these vertical segments, together with R, partitions \mathcal{U} into a set of regions. Each such region is called a trapezoidal region (or a trapezoid), and the partition is called a trapezoidal decomposi-
 tion.

[^0]Denote by $\Xi(R)$ this set of trapezoidal regions for a set R. The crucial fact that will be needed later is that each region $\Delta \in \Xi(R)$ in the trapezoidal decomposition is determined by a constant- 2,3 or $4-$ number of segments in R^{\dagger}. These are called the determining segments of Δ. The size of the trapezoidal decomposition of R, denoted by $|\Xi(R)|$, is the number of trapezoids in $\Xi(R)$.

The trapezoidal decomposition can be viewed as a planar graph—each of the $2|R|+m_{R}$ vertices consisting of the endpoints and intersections produce two additional points from the two rays, and the trapezoidal decomposition can be seen as a graph on these $3\left(2|R|+m_{R}\right)$ vertices. Thus we have

$$
|\Xi(R)| \leq 3 \cdot 3\left(2|R|+m_{R}\right)=O\left(|R|+m_{R}\right) .
$$

Definition 2.1. Given S, the set of trapezoids, over the trapezoidal decompositions of all possible $R \subseteq S$, are called the canonical trapezoids of S.

For a canonical trapezoid Δ, let S_{Δ} denote the set of segments of S intersecting the interior of Δ. Then note the following fact.

Fact 2.4. A trapezoid Δ is present in the trapezoidal decomposition of R if and only if its determining segments are present in R, and R does not contain any of the segments of S_{Δ}.

For the rest of the proof, we only work with canonical trapezoids determined by 4 segments. The case for canonical trapezoids determined by 2 and 3 segments is similar.

We return to our main theorem.
Theorem 2.3. Let S be a set of n line segments in the plane with m intersections, in general position. Let $r \geq 1$ be a given parameter. Then there exists a partition of \mathbb{R}^{2} into $O\left(r+\frac{m r^{2}}{n^{2}}\right)$ triangles such that the interior of any triangle in this partition intersects at most $\frac{n}{r}$ segments of S.

Proof. We are given a set S of n line segments in the plane, with m pairs of pairwise intersecting segments.

First note that a slightly weaker bound—but within logarithmic factors-follows immediately from ϵ-nets.

Given S, consider the set system (S, \mathcal{F}) induced by intersection with triangles in the plane:

$$
F \in \mathcal{F} \quad \text { if and only if } \quad \exists \text { a triangle } \Delta \text { such that } F=\{s \in S: s \cap \Delta \neq \emptyset\} .
$$

[^1]We will compute a $\frac{1}{r}$-net R for (S, \mathcal{F}). However, as we will need a stronger property than just R being a $\frac{1}{r}$-net, we briefly recall the construction of R.
Let R be a random set constructed by uniformly choosing, for a large-enough constant C, each segment of S with probability

$$
p=\frac{C r \log r}{n}
$$

Following earlier ideas, it is not hard to show that then R is a $\frac{1}{r}$-net for (S, \mathcal{F}) with probability at least $\frac{9}{10}$.

Geometrically, this means that any triangle Δ in the plane that intersects at least $\frac{1}{r} \cdot n$ segments of S must intersect a segment of R. Or put another way, any triangle Δ in the plane that does not intersect any segment of R intersects less than $\frac{1}{r} \cdot n$ segments of S.

One can triangulate the trapezoidal decomposition of R to get a triangulation \mathcal{T} with asymptotically the same number of triangles. Now we claim that the interior of each triangle $\Delta \in \mathcal{T}$ must intersect less than $\frac{n}{r}$ segments of S. For contradiction, assume otherwise.

Shrink Δ slightly to get a triangle Δ^{\prime} such that Δ^{\prime} lies in the interior of Δ and any segment of S intersecting the interior of Δ intersects Δ^{\prime}. But now Δ^{\prime} does not intersect any segment of our sample R and intersects at least $\frac{n}{r}$ segments of S. But this contradicts the fact that R was a $\frac{1}{r}$-net.

It remains to bound the size of \mathcal{T}. As each point of S was picked into R independently with probability p, we have

$$
\begin{aligned}
& \mathrm{E}[|R|]=n p=C r \log r, \\
& \mathrm{E}\left[m_{R}\right]=m p^{2}=m \frac{C^{2} r^{2} \log ^{2} r}{n^{2}} .
\end{aligned}
$$

By Markov's inequality, the probability that $|R| \geq 10 n p$ is at most $\frac{1}{10}$. Similarly the probability that m_{R}, the number of intersections between segments of R, is more than $10 \mathrm{mp}^{2}$ is also at most $\frac{1}{10}$. Thus, with probability at least $\frac{7}{10}$,

- R is an $\frac{1}{r}$-net for (S, \mathcal{F}), and
- the size of the trapezoidal decomposition of R is

$$
|\Xi(R)|=O\left(|R|+\left|m_{R}\right|\right)=O\left(n p+m p^{2}\right)=O\left(r \log r+\frac{m r^{2} \log ^{2} r}{n^{2}}\right)
$$

We now remove the logarithmic factor. For a large-enough constant C, set

$$
p=\frac{C r}{n}
$$

and pick each segment in S independently with probability p to get a random sample R.
Construct the trapezoidal decomposition $\Xi(R)$ of R. If all trapezoids $\Delta \in \Xi(R)$ intersect at most $\frac{n}{r}$ segments in S, we are done. Otherwise we will further partition each violating trapezoid—namely a trapezoid that intersects more than $\frac{n}{r}$ segments of S-based on two ideas.

First, the expected number of trapezoids in $\Xi(R)$ intersecting more than $\frac{n}{r}$ segments is small. In particular, we will show that, for any $t>0$, the expected number of trapezoids intersecting at least $t \cdot \frac{n}{r}$ segments in S is an exponentially decreasing function of t.

Second, consider a $\Delta \in \Xi(R)$. Let

$$
\begin{aligned}
S_{\Delta} & =\{s \in S: s \cap \Delta \neq \emptyset\} \\
n_{\Delta} & =\left|S_{\Delta}\right| \\
m_{\Delta} & =|\{p \in I(S): p \in \Delta\}|
\end{aligned}
$$

Let $t>0$ be such that $n_{\Delta}=t \cdot \frac{n}{r}$. Use the weaker bound, derived earlier, on S_{Δ} with parameter t, to get a partition inside Δ of

$$
O\left(t \log t+\frac{m_{\Delta} t^{2} \log ^{2} t}{n_{\Delta}^{2}}\right)=O\left(t \log t+\frac{n_{\Delta}^{2} t^{2} \log ^{2} t}{n_{\Delta}^{2}}\right)=O\left(t^{2} \log ^{2} t\right)
$$

trapezoids. By construction, each such new trapezoid inside Δ intersects at most $\frac{n_{\Delta}}{t}=\frac{n}{r}$ segments of S_{Δ}, and hence of S. Thus refining each Δ by adding new trapezoids, and taking the union of all these trapezoids for all $\Delta \in \Xi(R)$ gives the required partition on S with parameter r.

It remains to bound the overall expected size of this partition. Towards that we will need the two lemmas below.

Let $\Xi_{\leq k}$ be the set of canonical trapezoids defined by S that intersect at most k segments of S, i.e., those with $n_{\Delta} \leq k$.

Lemma 2.1.

$$
\left|\Xi_{\leq k}\right|=O\left(n k^{3}+m k^{2}\right) .
$$

Proof. Construct a random sample T by adding each segment of S to T with probability p_{0}. The expected total number of segments in T is $n p_{0}$ and the expected number of intersections between the segments of T is $m p_{0}^{2}$.

The trick is to count the expected size of $\Xi(T)$ in two ways.
On one hand, it is

$$
\mathrm{E}[|\Xi(T)|]=\mathrm{E}\left[O\left(|T|+m_{T}\right)\right]=\mathrm{E}[O(|T|)]+\mathrm{E}\left[O\left(m_{T}\right)\right]=O\left(n p_{0}+m p_{0}^{2}\right) .
$$

On the other hand, recalling that a trapezoid Δ appears in $\Xi(T)$ if and only if its four defining segments are picked in T, and none of the segments of S intersecting Δ are picked in T, we get that the probability of any fixed canonical trapezoid Δ appearing in $\Xi(T)$ is

$$
p_{0}^{4} \cdot\left(1-p_{0}\right)^{|\Delta \cap S|}
$$

Therefore the expected size of $\Xi(T)$ is

$$
\mathrm{E}[|\Xi(T)|]=\sum_{\text {canonical } \Delta} p_{0}^{4} \cdot\left(1-p_{0}\right)^{|\Delta \cap S|} \geq \sum_{\Delta \in \Xi_{\leq k}} p_{0}^{4} \cdot\left(1-p_{0}\right)^{|\Delta \cap S|} \geq \sum_{\Delta \in \Xi_{\leq k}} p_{0}^{4}\left(1-p_{0}\right)^{k} .
$$

Putting the two bounds together,

$$
\begin{aligned}
& \left|\Xi_{\leq k}\right| \cdot p_{0}^{4}\left(1-p_{0}\right)^{k} \leq \mathrm{E}[|\Xi(T)|]=O\left(n p_{0}+m p_{0}^{2}\right) \\
& \Longrightarrow \quad\left|\Xi_{\leq k}\right|=O\left(\frac{n p_{0}+m p_{0}^{2}}{p_{0}^{4}\left(1-p_{0}\right)^{k}}\right)=O\left(n k^{3}+m k^{2}\right),
\end{aligned}
$$

by setting $p_{0}=\frac{1}{2 k}$.

Lemma 2.2. For any $t>0$, the expected number of trapezoids in $\Xi(R)$ which intersect at least $t \cdot \frac{n}{r}$ segments of S is

$$
O\left(\left(t^{3} r+\frac{m r^{2} t^{2}}{n^{2}}\right) \cdot e^{-t}\right)
$$

Proof. Consider first the expected number of trapezoids in $\Xi(R)$ which intersect $t \frac{n}{r}$ segments of S :

$$
\mathrm{E}\left[\left|\Delta \in \Xi(R):|\Delta \cap S|=\frac{t n}{r}\right|\right]=\left|\Delta \in \Xi(S):|\Delta \cap S|=\frac{t n}{r}\right| \cdot p^{4}(1-p)^{\frac{t n}{r}}
$$

Using Lemma 2.1 and $p=\frac{C r}{n}$, we get

$$
\begin{aligned}
& =O\left(n\left(\frac{t n}{r}\right)^{3}+m\left(\frac{t n}{r}\right)^{2}\right) \cdot\left(\frac{C r}{n}\right)^{4} e^{-p \frac{t n}{r}} \\
& =O\left(\left(t^{3} r+\frac{m r^{2} t^{2}}{n^{2}}\right) \cdot e^{-C t}\right)
\end{aligned}
$$

Observe that the above bound is decreasing exponentially in t, and therefore the required bound, which would follow by summing up over all trapezoids intersecting at least $\frac{t n}{r}$ segments in S, will be asymptotically the same:

$$
\begin{aligned}
\sum_{\Delta: n_{\Delta} \geq t n / r} p^{4}(1-p)^{n_{\Delta}} & =\sum_{i=0} \sum_{\frac{2^{i} t n}{r} \leq n_{\Delta}<\frac{2^{i+1} t_{t n}}{r}} p^{4}(1-p)^{n_{\Delta}} \\
& \leq \sum_{i=0}\left(n\left(\frac{2^{i+1} t n}{r}\right)^{3}+m\left(\frac{2^{i+1} t n}{r}\right)^{2}\right) \cdot p^{4} \cdot e^{-p^{\frac{2^{i} t n}{r}}} \\
& \leq \sum_{i=0}\left(t^{3} r 2^{3 i+3}+\frac{m r^{2} t^{2} 2^{2 i+2}}{n^{2}}\right) e^{-C 2^{i} t} \\
& =t^{3} r\left(\sum_{i=0}\left(2^{3 i+3}\right) e^{-C 2^{i} t}\right)+\frac{m r^{2} t^{2}}{n^{2}}\left(\sum_{i=0}\left(2^{2 i+2}\right) e^{-C 2^{2} t}\right) \\
& =t^{3} r \cdot O\left(e^{-C t}\right)+\frac{m r^{2} t^{2}}{n^{2}} \cdot O\left(e^{-C t}\right) .
\end{aligned}
$$

This series is geometrically decreasing, so it is asymptotically equal to the required bound, for a large enough constant $C \geq 1$.

Now we can complete the proof of the theorem. For each $\Delta \in \Xi(R)$, let t_{Δ} be such that

$$
n_{\Delta}=t_{\Delta} \cdot \frac{n}{r}
$$

Using the weaker bound, refine trapezoid Δ by adding a $\frac{1}{t_{\Delta}}$-net R_{Δ} for all the $\frac{t_{\Delta} n}{r}$ segments of S intersected by Δ. The resulting expected total size of the trapezoidal partition is:

$$
\begin{aligned}
& =|R|+\sum_{\Delta} \operatorname{Pr}[\Delta \in \Xi(R)] \cdot\left(\text { size of the decomposition of } \frac{1}{t_{\Delta}} \text {-net within } \Delta\right) \\
& =|R|+\sum_{\Delta} \operatorname{Pr}[\Delta \in \Xi(R)] \cdot O\left(t_{\Delta} \log t_{\Delta}+\frac{m_{\Delta} t_{\Delta}^{2} \log ^{2} t_{\Delta}}{n_{\Delta}^{2}}\right) \quad \text { (using the weaker bound) } \\
& \leq|R|+\sum_{\Delta} \operatorname{Pr}[\Delta \in \Xi(R)] \cdot O\left(t_{\Delta}^{2} \log ^{2} t_{\Delta}\right) \quad\left(\text { as } m_{\Delta} \leq n_{\Delta}^{2}\right) \\
& =|R|+\sum_{j} \sum_{\substack{\Delta \text { s.t. } \\
2^{j} \leq t_{\Delta} 2^{j+1}}} \operatorname{Pr}[\Delta \in \Xi(R)] \cdot O\left(t_{\Delta}^{2} \log ^{2} t_{\Delta}\right) \\
& \leq|R|+\sum_{j} \mathrm{E}\left[\# \text { trapezoids } \Delta \text { in } \Xi(R) \text { with } 2^{j} \leq t_{\Delta}\right] \cdot O\left(2^{2(j+1)} \log ^{2} 2^{j+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq|R|+\sum_{j} O\left(\left(2^{3 j} r+\frac{m r^{2} 2^{2 j}}{n^{2}}\right) e^{-2^{j}}\right) \cdot O\left(2^{2(j+1)} \log ^{2} 2^{j+1}\right) \quad(\text { Lemma 2.2 }) \\
& =|R|+\left(r \sum_{j} O\left(2^{3 j} e^{-2^{j}}\right) \cdot O\left(2^{2(j+1)} \log ^{2} 2^{j+1}\right)\right)+\left(\frac{m r^{2}}{n^{2}} \sum_{j} O\left(2^{2 j} e^{-2^{j}}\right) \cdot O\left(2^{2(j+1)} \log ^{2} 2^{j+1}\right)\right) \\
& =n p+m p^{2}+O(r)+O\left(\frac{m r^{2}}{n^{2}}\right)=O\left(r+\frac{m r^{2}}{n^{2}}\right) \quad \text { (as the summands form a geometric series). }
\end{aligned}
$$

This finishes the proof of Theorem 2.3 .

Bibliography and discussion. The proof of the main theorem is from [1].
[1] M. de Berg and O. Schwarzkopf. Cuttings and applications. Int. J. Comput. Geometry Appl., 5(4):343-355, 1995.

2.3 Application: Forbidden Subgraphs

The main result of this section is the following.
Theorem 2.5. Let S be a set of n line segments in general position in the plane. If the intersection graph $G_{I}\left(S, E_{I}\right)$ of S does not contain $K_{t, t}$ as a subgraph, then $\left|E_{I}\right|=O(n)$, where the constant in the asymptotic notation depends only on t.

A classical question in extremal graph theory is bounding the number of edges in graphs and hypergraphs not containing certain forbidden subgraphs. Consider the Zarankiewicz problem.

Let $G=(V, E)$ be a graph on n vertices, and $t \geq 1$ be a given integer. What is the maximum size of E if G does not contain the subgraph $K_{t, t}$?

An early bound—and still the best known-is the following.
Theorem 2.6 (Kövári-Sós-Turán theorem). Let $G=(V, E)$ be a graph on n vertices, where G does not contain the subgraph $K_{t, t}$, for an integer $t \geq 1$. Then $|E| \leq n^{2-\frac{1}{t}}$.

Proof. For any vertex $v \in V$, let $N_{G}(v)$ denote the neighbors of v in G.
We will double-count the following pairs.

$$
T=\left\{(v, S): v \in V \quad \text { and } \quad S \subseteq N_{G}(v), \quad|S|=t\right\} .
$$

On one hand, each S with $|S|=t$ can belong to at most $(t-1)$ tuples in T, as otherwise a $K_{t, t}$ would exist in G. So we have

$$
|T| \leq\binom{ n}{t} \cdot(t-1)
$$

On the other hand, we can count $|T|$ exactly vertex by vertex:

$$
|T|=\sum_{v \in V}\binom{\left|N_{G}(v)\right|}{t}
$$

Putting these bounds together ${ }^{\dagger}$ gives the required upper-bound on $\sum_{v}\left|N_{G}(v)\right|=2|E|$.

We consider the following geometric scenario. Let S be a set of n line segments in the plane. Assume that S is in general position, that is,

[^2]- the intersection of every two segments of S is either empty, or is a point lying in the interior of both segments, and
- the three supporting lines of any three segments of S do not have a common intersection point.

Denote by $G_{I}\left(S, E_{I}\right)$ the intersection graph of S, namely

$$
E_{I}=\left\{\left\{s, s^{\prime}\right\}: s, s^{\prime} \in S \quad \text { and } \quad s \cap s^{\prime} \neq \emptyset\right\} .
$$

Note that $\left|E_{I}\right|$ is simply the number of intersections between the segments of S.

We return to the main result of this section, and prove it.
Theorem 2.5. Let S be a set of n line segments in general position in the plane. If the intersection graph $G_{I}\left(S, E_{I}\right)$ of S does not contain $K_{t, t}$ as a subgraph, then $\left|E_{I}\right|=O(n)$, where the constant in the asymptotic notation depends only on t.

Proof. Let $m=\left|E_{I}\right|$ be the number of intersections between the segments of S. Apply the segment partitioning bound, with the parameter r to be fixed later, to get a partition

$$
\Xi(S)=\left\{\Delta_{1}, \ldots, \Delta_{t}\right\}
$$

of the plane into $t \leq C \cdot\left(r+\frac{m r^{2}}{n^{2}}\right)$ triangles, where C is a fixed constant. By increasing it if necessary, we can assume that $C \geq 2$.

Let $S_{i} \subseteq S$ be the set of segments that intersect the interior or boundary of Δ_{i}. Then for each Δ_{i}, we have that

- at most $\frac{n}{r}$ segments intersect its interior,
- there are at most 6 segments passing through the vertices of Δ_{i}, and
- at most two segments lie on any edge of Δ_{i} (by general position assumption) and thus there are at most 6 such segments.

Thus for each $i=1, \ldots, t$,

$$
\left|S_{i}\right| \leq \frac{n}{r}+12 \leq \frac{2 n}{r}
$$

assuming that $12 \leq \frac{n}{r}$ (our value of r, set later, will satisfy this).
Now consider an intersection point q lying in the interior or boundary of Δ_{i}. As q lies in the interior of both segments, it is not hard to see that both these segments must be
present in S_{i}. By upper-bounding the intersections within each triangle of $\Xi(S)$ using the graph-theoretic bound of Theorem 2.6 , we get

$$
\begin{aligned}
m & \leq \sum_{\Delta_{i} \in \Xi(S)}\left(\text { \# of intersections in the interior or boundary of } \Delta_{i}\right) \\
& \leq \sum_{\Delta_{i} \in \Xi(S)}\left|S_{i}\right|^{2-\frac{1}{t}} \leq \sum_{\Delta_{i} \in \Xi(S)}\left(\frac{2 n}{r}\right)^{2-\frac{1}{t}} \leq 4 C \cdot\left(r+\frac{m r^{2}}{n^{2}}\right) \cdot\left(\frac{n}{r}\right)^{2-\frac{1}{t}} .
\end{aligned}
$$

Setting $r=\frac{n}{(8 C)^{t}}$, we get

$$
\begin{aligned}
m & \leq 4 C\left(\frac{n}{(8 C)^{t}}+\frac{m\left(\frac{n}{(8 C)^{t}}\right)^{2}}{n^{2}}\right) \cdot\left((8 C)^{t}\right)^{2-\frac{1}{t}}=4 C\left(\frac{n}{(8 C)^{t}} \cdot\left((8 C)^{t}\right)^{2-\frac{1}{t}}+\frac{m}{8 C}\right) \\
& \leq 4 \cdot 8^{t} C^{t+1} n+\frac{m}{2} \\
& \Longrightarrow m \leq(8 C)^{t+1} n .
\end{aligned}
$$

Bibliography and discussion. The proof is from [1].
[1] N. H. Mustafa and J. Pach. On the Zarankiewicz problem for intersection hypergraphs. Journal of Combinatorial Theory, Series A, 141:1-7, 2016.

[^0]: ${ }^{\dagger}$ If S is in general position, then there can be only $O(t)$ intersects points on the boundary of the triangles of the partition.

[^1]: ${ }^{\dagger}$ Recall that we assume S to be in general position.

[^2]: †Using Jensen's inequality.

