2.2 Partitioning Segments in R?

The main theorem is the following.

Theorem 2.3. Let S be a set of n line segments in the plane with m intersections, in general

position. Let r > 1 be a given parameter. Then there exists a partition of R? into O (r + ”;;22>

triangles such that the interior of any triangle in this partition intersects at most ™ segments
of S.

Observe that this is asymptotically optimal. Given S, assume that there exists a partition
of R? with ¢ triangles such that the interior of each triangle intersects at most  segments
of S. First, as there are n lines, we have ¢ > r. Next, as the interior of each triangle can

contain at most (3) = O (’;—j) intersection points, it must be that’

2 2
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For the rest of this section, S will denote a set of n line segments in the plane in general
position. For each R C S, let I(R) denote the set of intersections between segments of R,
and set mg = |I(R)].

We first briefly review a common way to partition space, the so-called trapezoidal decom-
positions.

Trapezoidal decompositions. Let S be a set of n line segments in the plane, and U/ a
large-enough rectangle containing all the segments of S in its interior.

Then given any set R C S of segments, partition I/ with respect to R as follows:

From each of the 2|R| endpoints of segments in R and each of the
mp intersection points between two segments
of R, trace a vertical ray upwards and down- —_
wards until it hits another segment (or the
bounding rectangle ¢/). The union of all these
vertical segments, together with R, partitions
U into a set of regions. Each such region is -
called a trapezoidal region (or a trapezoid), and
the partition is called a trapezoidal decomposi-
tion.

If S is in general position, then there can be only O(t) intersects points on the boundary of the triangles of
the partition.
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Denote by =(R) this set of trapezoidal regions for a set R. The crucial fact that will be
needed later is that each region A € =(R) in the trapezoidal decomposition is determined
by a constant—2, 3 or 4—number of segments in R'. These are called the determining
segments of A. The size of the trapezoidal decomposition of R, denoted by |=(R)|, is the
number of trapezoids in Z(R).

The trapezoidal decomposition can be viewed as a planar graph—each of the 2| R|+mp ver-
tices consisting of the endpoints and intersections produce two additional points from the
two rays, and the trapezoidal decomposition can be seen as a graph on these 3 (2|R| + mg)
vertices. Thus we have

[2(R)] <3-32[R[+mg) = O (IR +mg).
Definition 2.1. Given S, the set of trapezoids, over the trapezoidal decompositions of all
possible R C S, are called the canonical trapezoids of S.
For a canonical trapezoid A, let So denote the set of segments of S intersecting the interior
of A. Then note the following fact.
Fact 2.4. A trapezoid A is present in the trapezoidal decomposition of R if and only if its

determining segments are present in R, and R does not contain any of the segments of Sx.

For the rest of the proof, we only work with canonical trapezoids determined by 4 seg-
ments. The case for canonical trapezoids determined by 2 and 3 segments is similar.

We return to our main theorem.

Theorem 2.3. Let S be a set of n line segments in the plane with m intersections, in general
)
triangles such that the interior of any triangle in this partition intersects at most ** segments
of S.

position. Let r > 1 be a given parameter. Then there exists a partition of R? into O (r + 2z

n

Proof. We are given a set S of n line segments in the plane, with m pairs of pairwise
intersecting segments.

First note that a slightly weaker bound—but within logarithmic factors—follows immedi-
ately from e-nets.

Given S, consider the set system (S, F) induced by intersection with triangles in the plane:

FeF ifandonlyif 3Jatriangle A suchthat F={se€ S:sNA#0}.

TRecall that we assume S to be in general position.
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We will compute a -net R for (S, F). However, as we will need a stronger property than
just R being a %—net, we briefly recall the construction of R.

Let R be a random set constructed by uniformly choosing, for a large-enough constant C,
each segment of S with probability

_ Crlogr

p
n

Following earlier ideas, it is not hard to show that then R is a +-net for (S, F) with proba-
bility at least .

Geometrically, this means that any triangle A in the plane that intersects at least
1.n segments of S must intersect a segment of k. Or put another way, any triangle
A in the plane that does not intersect any segment of R intersects less than 1 - n
segments of S.

One can triangulate the trapezoidal decomposition of R to get a triangulation 7 with
asymptotically the same number of triangles. Now we claim that the interior of each trian-
gle A € T must intersect less than  segments of S. For contradiction, assume otherwise.

Shrink A slightly to get a triangle A’ such that A’ lies in the interior of A and any segment
of S intersecting the interior of A intersects A’. But now A’ does not intersect any segment
of our sample R and intersects at least ** segments of S. But this contradicts the fact that
R was a L-net.

It remains to bound the size of 7. As each point of S was picked into R independently
with probability p, we have

E[|R|]]=np =Crlogr,

C?r? log2 r
m—.

E[mg] = mp® = 5

n

By Markov’s inequality, the probability that |R| > 10np is at most 1. Similarly the proba-
bility that mp, the number of intersections between segments of R, is more than 10mp? is

also at most 1—10 Thus, with probability at least %,

* Ris an i-net for (S, F), and

* the size of the trapezoidal decomposition of R is

21 2
E(R)| = O (IR| + |mgl) = O (np + mp?) = O (HogH W_Ogr) |
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We now remove the logarithmic factor. For a large-enough constant C, set

_or

p 3
n

and pick each segment in S independently with probability p to get a random sample R.

Construct the trapezoidal decomposition = (R) of R. If all trapezoids A € Z(R) intersect
at most * segments in S, we are done. Otherwise we will further partition each violating
trapezoid—namely a trapezoid that intersects more than » segments of S—based on two
ideas.

First, the expected number of trapezoids in = (R) intersecting more than ” segments is
small. In particular, we will show that, for any ¢ > 0, the expected number of trapezoids
intersecting at least ¢ - 2 segments in S is an exponentially decreasing function of ¢.

Second, consider a A € Z(R). Let
Sa={seS:snNA#D}
na = |Sal
ma =[{p e L(5):pecA}.

Let t > 0 be such that nn = t- . Use the weaker bound, derived earlier, on Sx with
parameter ¢, to get a partition inside A of

t2log? t 2 12log?t
O (tlogt—{—u) =0 (tlogt—i—%) zO(t210g2t)
A A

trapezoids. By construction, each such new trapezoid inside A intersects at most “» = 2
segments of Sa, and hence of S. Thus refining each A by adding new trapezoids, and
taking the union of all these trapezoids for all A € =(R) gives the required partition on S

with parameter 7.

It remains to bound the overall expected size of this partition. Towards that we will need
the two lemmas below.

Let =, be the set of canonical trapezoids defined by S that intersect at most k& segments
of S, i.e., those with na < k.

Lemma 2.1.

Skl = O (nk? + mk?) .

Proof. Construct a random sample 7' by adding each segment of S to 7" with probabil-
ity po. The expected total number of segments in 7" is np, and the expected number of
intersections between the segments of T is mp3.
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The trick is to count the expected size of =(7") in two ways.

On one hand, it is
E[Z(T)|] =E[O(|T| +mz)] =E[O(|T])] + E[O (mr)] = O (npo + mp3) -

On the other hand, recalling that a trapezoid A appears in =(7") if and only if its four
defining segments are picked in 7', and none of the segments of S intersecting A are
picked in T, we get that the probability of any fixed canonical trapezoid A appearing in
=E(T) is

pé . (1 - p0>|AﬂS| ]

Therefore the expected size of Z(7) is

EE(M)= Y p-1-p)*™> > p 0) A7 >3 pi(1 = po)”.

canonical A A€E<«y A€E<g

Putting the two bounds together,

(1]

E<kl - po(1=po)* < B[=(D)] = O (npo + mpp)

— npo +mp3> 3 2
= (p%(l—po)’“ ( )

by setting py = 5. O
Lemma 2.2. For any t > 0, the expected number of trapezoids in =(R) which intersect at

least t -  segments of S is
2t2
@) (<t3r+ ) -et) .
n

Proof. Consider first the expected number of trapezoids in =(R?) which intersect ¢ seg-
ments of S:

in

t
E“AeE(R): \AHS\:g] :‘AEE(S): IANS =22 pt(1—p)T

Using Lemma and p = =5, we get




Observe that the above bound is decreasing exponentially in ¢, and therefore the required
bound, which would follow by summing up over all trapezoids intersecting at least &
segments in S, will be asymptotically the same:

>, P-pm=) > pta-pme

A:na>tn/r Zifn SnA<2i+Tltn

27+1n \ ° 2i+1n\ 2 4 2w
< n +m ptee P
— r r

24202i+2
mr-t:2 i
: )6 c2't

n

, 2,2
— 3 (Z (25749) eCTt) i m:;zt (

=0 i=0

(22i+2) 602%)

2,2
=t3r-0 (e_Ct) + m:;zt -0 (e_Ct) .

This series is geometrically decreasing, so it is asymptotically equal to the required bound,
for a large enough constant C' > 1. ]

Now we can complete the proof of the theorem. For each A € Z(R), let ¢t be such that

n
’I”LAItA'—.
r

Using the weaker bound, refine trapezoid A by adding a i-net R for all the ‘2 segments
of S intersected by A. The resulting expected total size of the trapezoidal partition is:

1
= |R| + E Pr[A € Z(R)] - (size of the decomposition of t—-net within A)
A
A

t4 log*t
M) (using the weaker bound)

= |R| + EA:PI‘[A S E(R)] -0 (tA 10gtA + nzA

< |R| + ZPr[A €E(R)]- O (tXlog*ta) (as ma < n3)
A

— |R| + Z ST PrA€E(R)]- O (Alog?ta)

) s.t.
20 <tp<2it1

< |R| + ZE [ # trapezoids A in Z(R) with 27 <t, |- O (2201 1og? 271)

J
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| 202\, | |
<R+ 0 ((2% + 2 ) e—”> L0 (2201082 21)  (Lemma[2:2)
J

n2

. 2 .
= |R| + <rz 0 (29e7) - 0 (22049 10g? 2j+l)) + <ﬂ;_z >0 (2%e) 0220 log? 2j+1)>
J J

5 mr? mr? _ .
=np+mp+O0(r)+0 | —5 | =0|r+— (as the summands form a geometric series).
n n
This finishes the proof of Theorem O

Bibliography and discussion. The proof of the main theorem is from [1]].

[1] M. de Berg and O. Schwarzkopf. Cuttings and applications. Int. J. Comput. Geometry Appl.,
5(4):343-355, 1995.
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2.3 Application: Forbidden Subgraphs

The main result of this section is the following.

Theorem 2.5. Let S be a set of n line segments in general position in the plane. If the
intersection graph G (S, Er) of S does not contain K, as a subgraph, then |E;| = O (n),
where the constant in the asymptotic notation depends only on t.

A classical question in extremal graph theory is bounding the number of edges in graphs
and hypergraphs not containing certain forbidden subgraphs. Consider the Zarankiewicz
problem.

Let G = (V, E) be a graph on n vertices, and ¢t > 1 be a given integer. What is the
maximum size of £ if G does not contain the subgraph K ;?
An early bound—and still the best known—is the following.
Theorem 2.6 (Kovari-Sés-Turdn theorem). Let G = (V, E) be a graph on n vertices, where
G does not contain the subgraph K ,, for an integer t > 1. Then |E| < n* .
Proof. For any vertex v € V, let N (v) denote the neighbors of v in G.

We will double-count the following pairs.
T={(v,S):veV and S C Ng(v), |S|=t}.

On one hand, each S with |S| = ¢ can belong to at most (¢ — 1) tuples in 7', as otherwise a
K, would exist in G. So we have
7| < (?) (t—1).

On the other hand, we can count |T'| exactly vertex by vertex:
[Ne(v)]
=3 (M)
veV

Putting these bounds together' gives the required upper-bound on Y |Ng(v)| = 2|E|. O

We consider the following geometric scenario. Let S be a set of n line segments in the
plane. Assume that S is in general position, that is,

TUsing Jensen’s inequality.
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* the intersection of every two segments of S is either empty, or is a point lying in the
interior of both segments, and

* the three supporting lines of any three segments of S do not have a common inter-
section point.

Denote by G, (S, E;) the intersection graph of S, namely
E; = {{s,s’} 8,8 €S and sﬂs';«é@}.

Note that |E;| is simply the number of intersections between the segments of S.

We return to the main result of this section, and prove it.

Theorem 2.5. Let S be a set of n line segments in general position in the plane. If the
intersection graph G (S, Er) of S does not contain K, as a subgraph, then |E;| = O (n),
where the constant in the asymptotic notation depends only on t.

Proof. Let m = |F;| be the number of intersections between the segments of S. Apply the
segment partitioning bound, with the parameter r to be fixed later, to get a partition

2(S) = {Ar,..., A}

2

of the plane into t < C' - (r + 55

n

) triangles, where C' is a fixed constant. By increasing it
if necessary, we can assume that C' > 2.

Let S; C S be the set of segments that intersect the interior or boundary of A;. Then for
each A;, we have that

* at most * segments intersect its interior,
* there are at most 6 segments passing through the vertices of A;, and

* at most two segments lie on any edge of A; (by general position assumption) and
thus there are at most 6 such segments.

Thus foreachi =1, ... ¢,
2
5 <2<
r T
assuming that 12 < * (our value of r, set later, will satisfy this).

Now consider an intersection point ¢ lying in the interior or boundary of A;. As ¢ lies
in the interior of both segments, it is not hard to see that both these segments must be
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present in S;. By upper-bounding the intersections within each triangle of =(S) using the
graph-theoretic bound of Theorem we get

m < Z (# of intersections in the interior or boundary of Ai>
A;EeE(S)

27% 1
< > s > (Q—n) §4O-<r+@)-<ﬁ)2 "

2
AEE(S) Avezs) N n "
Setting r = ﬁ, we get
2
n o m(wty) " i
< 4C ((8CYH)Tt =40 (8T 4+ —
m <40 | i+ | (80)) (G- (500" 4 )

< 4.8'CHn + %

— m < (8C)" ' n.

Bibliography and discussion. The proof is from [[1].

[1] N. H. Mustafa and J. Pach. On the Zarankiewicz problem for intersection hypergraphs. Journal
of Combinatorial Theory, Series A, 141:1-7, 2016.
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