
Chapter 1

First Constructions of Epsilon-Nets

Consider the minimum hitting set problem for disks:

Let P be a set of n points in R2 and R a collection of m subsets of P induced by
disks in the plane. Then the minimum hitting set problem asks for a hitting set
Q ⊆ P for R of minimum cardinality.

This can be written as an integer program with n variables, say xp ∈ {0, 1} for each p ∈
P , specifying whether p belongs to an optimal solution. Then the size of the optimal

Minimize
∑
p∈P

xp

subject to:∑
p∈R

xp ≥ 1 ∀R ∈ R

0 ≤ xp ≤ 1 ∀p ∈ P.

solution is simply

OPT =
∑
p

xp.

Relaxing this integer program gives a linear program
where xp ∈ [0, 1], and the goal is to minimize the sum of
the xp’s. See the LP on the right.

Let

W ∗ =
∑
p∈P

xp

denote the value of the linear program. Then the LP
constraint implies that the sum of the variables in each set R ∈ R is least 1. In other
words, each set contains at least 1

W ∗
-th of the total weight.

So the initial problem of finding a hitting set for R—which could include sets of small
cardinality—now reduces to the problem of finding a hitting set for all sets with weight at
least 1

W ∗
-th of the total weight. In particular, the LP will assign the elements in a small-

sized set of R relatively large weights, and this guides us in the choice of a near-optimal
hitting set.

If we could find a hitting set Q ⊆ P of size at most C · W ∗ for this problem, for some



constant C, then we will have

|Q| ≤ C ·W ∗ ≤ C ·OPT,

and so Q is a C-approximation to the optimal hitting set.

This task—called rounding in optimisation—is precisely the ε-net problem we will study.

1.1 Deterministic

An ε-net is a hitting set for those sets of R that contain at least an ε-th fraction of the
elements of X.

Definition 1.1. Given a set system (X,R) and a parameter ε > 0, a set N ⊆ X is an ε-net
for (X,R) if for each R ∈ R with |R| ≥ ε · |X|, we have N ∩R 6= ∅.

Our goal is to show the existence of an ε-net of small size.

We will be interested in the case where R is derived from configurations of geometric
objects. For example, consider the case where the
base elements are a set P of n points in the plane,
and the set system R is the primal set system in-
duced on P by disks. See the figure for an exam-
ple with n = 16 and a 1

4
-net consisting of 6 points.

In this case, any disk containing at least 1
4
·16 = 4 points

must contain one of the six points of the 1
4
-net.

Note that there exist point sets where every ε-net must
have size Ω

(
1
ε

)
. For example, arrange n points into

groups of size εn, and place the points in each group
within a small circle, and place these circles disjoint from each other. Clearly, N must
contain at least one point from each circle, and there are b1

ε
c disjoint circles.

On the other hand, constructing N by simply arbitrarily pick-
ing one point from each circle is not sufficient, as there could
exist a disk containing εn points of P , but not completely
containing any one circle, and so possibly not containing any
point of N . See the figure.

Surprisingly, as we will see later, this lower-bound is asymp-
totically the right one!

For this section, we show O
(

1
ε

)
-sized ε-nets for an easier set

system.
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Theorem 1.1. Given a set P of n points in the plane, and a parameter ε > 0, there exists an
ε-net of size O

(
1
ε

)
for the primal set system induced by halfplanes in the plane.

? ? ?

Before considering this case, we examine some simpler set systems.

Intervals in R. Given a set P of n points in R, our goal is to pick an N ⊆ P such that
any interval that contains at least εn points of P contains some point of N . This is easy:
sort the points of P by their coordinates and simply pick every εn-th point in this order. As
each interval must contain a contiguous subset with respect to this ordering, it will be hit
by N . The size of N is exactly

⌊
n
εn

⌋
=
⌊

1
ε

⌋
.

Anchored rectangles in R2. Let P be a set of n points in R2, each with a positive y-
coordinate. We seek an ε-net N for P with respect to rectangles anchored at the x-axis—in
other words, any rectangle intersecting the x-axis and containing at least εn points of P

x-axis

P1 P2 P3 P4 P5

q1

q2

q3 q4
q5

should be hit by N .

To construct N , assume the points of P = {p1, . . . , pn} are
sorted by increasing x-coordinates. Partition P into t =

⌈
3
ε

⌉
sets P1, . . . , Pt of contiguous points, with each Pi containing
εn
3

points, except possibly the last set Pt. For each i, add the
point with the lowest y-coordinate in Pi, say the point qi ∈ Pi,
to N . This is our ε-net, of size at most 3

ε
.

To see why N is an ε-net, consider any anchored rectangle
R containing at least εn points of P . Then R must contain
points from at least 3 sets in our partition, say the sets Pi, Pj and Pk, where i < j < k. And
so R must contain the point qj with the lowest y-coordinate in Pj.

Half-spaces in R2. We prove the following theorem.

Theorem 1.1. Given a set P of n points in the plane, and a parameter ε > 0, there exists an
ε-net of size O

(
1
ε

)
for the primal set system induced by halfplanes in the plane.

Proof. First consider the easier case where P is in convex position. Then note that any half-
space must contain a contiguous subset of P with respect to the order in which the points
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appear on the convex-hull. As before, picking every εn-th point along the convex-hull gives
an ε-net of size

⌊
1
ε

⌋
.

Otherwise, if P is not in convex position, then we’ll first map the points in P to a set P ′

which is in convex position, construct an ε-net N ′ for P ′ as before, and from N ′ reconstruct
an ε-net N for P .

Pick any point lying in the convex-hull, conv(P ), of P . Say we pick o ∈ P . For each pi ∈ P ,
trace a ray from o through pi till this ray intersects the boundary of conv(P ) in some point,
say the point p′i. Map pi to p′i; if pi was on conv(P ), then p′i = pi.

Let P ′ be the resulting set of n− 1 points, now in convex position. Pick an ε-net N ′ for P ′,
of size 1

ε
.

O

O

O

Now we show how to construct an ε-net N from N ′. Take a
point p′i ∈ N ′. If p′i = pi, i.e., pi was already on conv(P ), then
add pi to N . Otherwise, p′i lies on some edge of conv(P ) that
is spanned by some two points of P †. Add both these points to
N . Finally, add the point o to N .

Clearly

|N | ≤ 1 + 2 · |N ′| = 1 + 2

⌊
1

ε

⌋
.

We claim that N is an ε-net. Consider any half-space H con-
taining at least εn points of P . If it contains o, we’re done as
o ∈ N . Otherwise, by construction, we have the property that
if pi ∈ H, then the corresponding point p′i also lies in H. So H
contains at least εn points of P ′. Therefore H contains a point
p′i ∈ N ′, and so it must contain at least one of the two points of
the edge of conv(P ) on which p′i lies.

†Or p′i lies on a point of P forming a vertex of conv(P ), in which case we replace p′i with this point instead.
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Bibliography and discussion. The proof for halfplanes in R2 was invented here
for didactic purposes; the different original proof is in [1].

[1] J. Komlós, J. Pach, and G. J. Woeginger. Almost tight bounds
for epsilon-nets. Discrete & Computational Geometry, 7:163–173,
1992.
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1.2 Probabilistic

Given a set system (X,R), first observe that, regardless of the structure of R, one can
always get the following bound.

Theorem 1.2. Let (X,R) be a set system with |X| = n and |R| = m. Then given a parameter
ε > 0, there exists an ε-net N for R of size O

(
lnm
ε

)
.

There are several (essentially equivalent) ways of viewing its proof. Note that for our
purposes, assume that each set in R has size at least εn. Let R = {R1, . . . , Rm} be the m
sets of R.

Iterative view. Set R1 = R. Pick an element of X that hits the maximum number of
sets of R1, say p1 ∈ X. Add p1 to N , remove the sets hit by p1 from R1 to get R2. Now
re-iterate this procedure on R2.

Let Ri be the unhit sets after i− 1 iterations, and let pi ∈ X be the point added to N in the
i-th iteration.

At the i-th iteration, by the pigeonhole principle, there exists an element hitting at least∑
R∈Ri |R|
n

≥
∑

R∈Ri εn

n
= ε · |Ri|

sets of Ri. Remove any ε|Ri| such sets from Ri to get Ri+1. Thus for any i ≥ 1, we have

|Ri+1| = (1− ε) |Ri| = (1− ε)2 |Ri−1| = · · · = (1− ε)i · |R1|.

At the i-th iteration, we have added i elements to N , and there are

m (1− ε)i ≤ m e−εi

unhit sets remaining. For i = Θ
(

lnm
ε

)
, this becomes some constant, after which one can

just add one element from each remaining unhit set to N . Therefore, we can hit all sets
with O

(
lnm
ε

)
elements.

Combinatorial view. Note that the pigeonholing in the proof above is essentially stating
that, on average, each element of X hits εm sets of R. Of course, this average goes down
with the number of iterations, which is what results in the extra logarithmic factor. This
can also be viewed succinctly combinatorially, for an integer t we will fix later:

count the number of subsets of X of size t that do not hit all sets of R.
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For each set R ∈ R, there are at most
(
n−εn
t

)
subsets of size t that do not hit R, and so

there at most ∑
R∈R

(# of t-sized subsets Q with Q ∩R = ∅) ≤ m ·
(
n− εn
t

)
subsets of X that do not hit at least one set of R. If this is less than the total number of
subsets of size t, then clearly there exists a set of size t that hits all sets of R. A simple
calculation shows this for t = ln(m+1)

ε
:

m ·
(
n−εn
t

)(
n
t

) = m · (n− t)!
(n− εn− t)! ·

(n− εn)!

n!
= m · (n− t)(n− t− 1) · · · (n− εn+ 1− t)

n(n− 1) · · · (n− εn+ 1)

= m · (n− t)
n

· · · (n− εn+ 1− t)
(n− εn+ 1)

= m ·
(

1− t

n

)(
1− t

n− 1

)
· · ·
(

1− t

n− εn+ 1

)

≤ m ·
(

1− t

n

)εn
≤ m · e− tεnn = m · e− ln(m+1) < 1.

Probabilistic view. Perhaps the simplest view is the probabilistic one: consider picking a
random sample

S : uniform random sample of X of size t.

Then

Pr [a fixed set R ∈ R is not hit by S] =

(
1− |R|

n

)t
≤ (1− ε)t ≤ e−tε.

So the probability that at least one of the sets of R is not hit by S is at most me−εt. For
t = ln(m+1)

ε
, this is less than 1. In particular there is a non-zero probability that S will hit

all sets. Therefore, there has to exist at least one such set—in fact, many of them.

If the m sets can be arbitrary, then it is easy to see that asymptotically one cannot do much
better than the above bound. For example, take R to be the power set of X, i.e., m = 2n.
Then, for ε = 1

2
, any ε-net must have size at least n

2
, while the above bound gives a O (n)-

sized net. Obviously, set systems derived from geometry have considerable restrictions.
We now show that, by a simple observation, one can actually get smaller ε-nets for a wide
class of geometric set systems.

? ? ?
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AXIS-PARALLEL RECTANGLES IN THE PLANE

Let P be a set of n points in the plane, and R = {P1, . . . , Pm} the set system defined by
containment by axis-parallel rectangles. In other words, Pi ∈ R if and only if there exists
an axis-parallel rectangle R such that Pi = R ∩ P . We now prove the existence of an ε-net
for (P,R) of size O

(
1
ε

log 1
ε

)
.

For technical reasons, let U be a large-enough axis-parallel rectangle containing all points
in P .

The key notion is that of a canonical rectangle spanned by a set of points.

A canonical rectangle spanned by Q ⊂ U is a rectangle whose each bounding
edge either passes through some point of Q or lies on ∂U .

UWe remark that there are four types of canonical rectangles,
namely those ‘fixed’ by 4, 3, 2 or 1 points. See the figure. For
the rest of the proof, we only consider canonical rectangles
fixed by 4 points; the other cases are similar.

There are O (n4) canonical rectangles spanned by any set of
n points in the plane. This implies that |R| = O(n4), as an
arbitrary rectangle can always be ‘shrunk’ to get a canonical
rectangle, containing precisely the points of the original rect-
angle.

As before, choose a random sample S by picking each point independently with probability
p. The earlier analysis considered the probability that a set Pi ∈ R is not hit by S, and then
we used the union over all sets of R to upper-bound the probability that there exists some
set in R that is not hit by S. This gave the bound O

(
1
ε

log |R|
)
.

The trick here is to consider the empty canonical rectangles spanned by the points of S.
Namely those canonical rectangles such that the point on each of its edges belongs to S,
and that contain no point of S in their interior. Here is the new observation, using packing
properties of Euclidean space.

Claim 1.3. If each empty canonical rectangle spanned by S has less than εn points of P ,
then S is an ε-net.

Proof. For contradiction, assume that there exists a rectangle R containing greater than
εn points that is not hit by S. Then expand R by moving its left, right, top and bottom
edges to transform it to an empty canonical rectangle R′ spanned by S. But we assumed
R′ contained less than εn points of P , a contradiction.

Let’s do a rough calculation similar to the probabilistic proof of the general case. Say we
add each point of P , independently with probability p, to S. Then we have E [|S|] = np,
and so there are an expected O (|S|4) = O

(
(np)4) canonical rectangles spanned by the
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points of S. For a fixed such rectangle R, if it contains at least εn points of P , then the
probability that it does not contain any point of S is (1− p)|R| ≤ (1− p)εn. By the union
bound, the probability that there exists some canonical rectangle spanned by S that does
not contain any point of S is at most

|S|4(1− p)εn ≤ (np)4 e−pεn.

To make it less than 1, we set p = 5
εn

ln 1
ε

and so

= n4

(
5 ln 1

ε

εn

)4

e−5 ln 1
ε =

1

ε4

(
5 ln

1

ε

)4

ε5 � 1.

Thus, there exists a set S, of expected size O
(

1
ε

log 1
ε

)
, such that all canonical rectangles

spanned by S either contain less than εn points of P or are hit by S. This implies that each
empty canonical rectangle spanned by S contains less than εn points of P . We are done by
Claim 1.3: S is an ε-net, of expected size O

(
1
ε

log 1
ε

)
.

Of course, the above proof is technically incorrect for the following reason: we are cal-
culating the probability that a canonical rectangle spanned by the points of S is empty
of points of S! Instead, the correct way is to argue that, with non-zero probability, no
canonical rectangle

(i) spanned by the points of P , and

(ii) containing at least εn points of P

ends up as an empty canonical rectangle spanned by the points of S.

Fix a canonical rectangle R spanned by four points of P . It ends up as an empty canonical
rectangle in S if and only if

(i) the four points defining R are picked into S, and

(ii) none of the points contained in R are picked into S.

Let ER be the event that R ends up as an empty canonical rectangle spanned by S. As each
point of P was picked independently into S, we have

Pr [ER] = p4 · (1− p)|R∩P |−4 .

Using the union bound over all possible O(n4) canonical rectangles spanned by points of
P , the probability that at least one such rectangle containing greater than εn points ends
up as an empty canonical rectangle in S is

Pr

[⋃
R

ER
]
≤
∑
R

Pr [ER] =
∑
R

p4 · (1− p)|R∩P |−4 ≤ n4 · p4 · (1− p)εn−4 ≤ 1

6
,
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for p = 12
εn

log 1
ε
.

Similarly, one can show that the probability that there exists an empty canonical rectangle
defined by 3 points is less than 1

6
, and identically for the canonical rectangles defined by 2

points. Therefore, with probability at least 1
2
, each empty canonical rectangle spanned by

S has less than εn points of P .

By Claim 1.3, S is an ε-net, of expected size

E [|S|] = np =
12

ε
log

1

ε
.

By Chernoff bounds, the size of S is very sharply concentrated around its expectation. So
the probability that |S| ≥ 2 E [|S|] is less than 1

2
†. Then with non-zero probability, S is an

ε-net of size O
(

1
ε

log 1
ε

)
.

? ? ?

The reader will notice that the only property of axis-aligned rectangles that is used in the
proof is the concept of canonical rectangles—that a canonical rectangle R is ‘fixed’ by 4

points of P (or 3, 2, 1 points), and that R is spanned by S if and only if these points are
picked. This is a very general idea, and we next give another example of its use.

DISKS IN THE PLANE

Let (P,R) be defined by disks in the plane, i.e., Pi ∈ R if and only if there exists a disk D
in the plane such that Pi = P ∩ D. We now show that a similar method of analysis also

shows the existence of an ε-net of size O
(

1

ε
log

1

ε

)
.

We again have the notion of a canonical disk.

A canonical disk spanned by Q ⊆ R2 is either a disk passing through three points
of Q, or a halfplane whose bounding line passes through two points of Q (such a
halfplane can be seen as disk of infinite radius).

Then observe the following.

Claim 1.4. Let Q ⊂ R2 be a finite set of points, and D a disk not containing any point of
Q. Then D lies in the union of at most two empty canonical disks spanned by Q.

Proof. Assume a disk D does not contain any point of Q, and has center c. Keeping the
†To avoid this very minor technical annoyance, often the sampling is done with a different distribution, by
picking S uniformly from P over all subsets of size t = Θ

(
1
ε log 1

ε

)
. Then we avoid having to do this, though

then the probability calculation for a set being hit by S is slightly different. We get the same result, though.
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center fixed, increase the radius of D until it touches some
point, say q1, of Q. Then, move c in the direction ~q1c, away
from q1, while increasing the radius so that it still touches q1.
Eventually, the disk will touch another point, say q2 ∈ Q.

Note that c now lies on the perpendicular bisector of the seg-
ment q1q2. Now by moving c along this bisector in both direc-
tions, one can get two canonical disks, say D1 and D2, such
that D ⊂ D1 ∪D2.

Pick a random sample by adding each point of P , indepen-
dently with probability p, to S. The above claim implies that a
sample S would be an ε-net if one can ensure that each empty
canonical disk spanned by S contains less than εn

2
points of P .

A disk D spanned by three points of P is an empty canonical
disk spanned by S if and only if the three points are present
in S, and no point of S lies inside D. The probability of this
is

p3 (1− p)|D∩P |−3 .

There are O (n3) canonical disks spanned by P . Thus by the
union bound, the probability that a canonical disk containing
greater than εn

2
points of P ends up as an empty canonical disk spanned by S is at most

n3 · p3 (1− p) εn2 −3 .

Setting p = 12
εn

log 1
ε
, the above probability becomes less than 1

2
. As before, this implies the

existence of an ε-net of size O
(

1
ε

log 1
ε

)
.

Bibliography and discussion. The idea of analyzing random samples using
canonical structures is taken from the seminal paper of Clarkson [1].

[1] K. L. Clarkson. New applications of random sampling in computational geometry. Discrete &
Computational Geometry, 2:195–222, 1987.
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2.1 Linear-sized nets for Disks in R2

We now show that the bound of O
(

1
ε

log 1
ε

)
can be further improved in several cases by

a fairly general idea. Specifically, for the previously considered range spaces obtained by
disks and rectangles in the plane, one can get o

(
1
ε

log 1
ε

)
bounds.

The main theorem of this chapter is the following.

Theorem 2.1. Let P be a set of n points in R2. Then there exists an ε-net N , of size O
(

1
ε

)
,

for the set system induced on P by disks in the plane.

Intuitive idea. Recall the probabilistic argument for the existence of an ε-net of size
O
(

1
ε

log 1
ε

)
for disks. We took a uniform random sample S ⊆ P by choosing each point of

P independently with probability p = Θ
(

1
εn

log 1
ε

)
. We used this geometric property:

if every empty canonical disk spanned by S has less than εn
2

points of P , then S is
an ε-net for disks for P .

Since the total possible number of disks that could end up as empty canonical disks
spanned by S is, naively counting, at most O (n3), and the probability of each such disk D
ending up as an empty canonical disk induced by S is at most p3 · (1− p) εn2 , the expected
number of empty canonical disks in the random sample S can be upper-bounded by

O
(
n3
)
· p3 · (1− p) εn2 .

To make this less than one, we set p = 10
εn

log 1
ε
. Then E[|S|] = np = Θ

(
1
ε

log 1
ε

)
and we’re

done.

The first new idea is to observe that the above analysis is imprecise: the probability
of a canonical disk D ending up as an empty canonical disk spanned by S is equal to
p3 (1− p)|D∩P |. Therefore, if |D ∩ P | is much larger than εn

2
, this probability becomes con-

siderably smaller, in fact decreasing exponentially with |D ∩ P |. Thus the ‘hard case’ is
considering disks containing Θ (εn) points.

Fortunately, the number of possible canonical disks containing Θ(εn) points is considerably
smaller than the naive bound of O (n3)—more generally, the number of canonical disks
containing at most k points of P is at most O (nk2).

As an example, we compute the expected number of disks, each containing c · εn points
for some fixed constant c > 1, that end up as empty canonical disks spanned by a random
sample S constructed by picking each point of P independently with probability 1

εn
.

There are O
(
n (cεn)2) such canonical disks, and each ends up in the sample with probabil-

ity p3 (1− p)cεn. So the expected number of such disks that will end up as empty canonical
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disks spanned by S is

Θ
(
n (cεn)2 · p3 (1− p)cεn

)
= O

(
n
(
c2ε2n2

)
· 1

ε3n3
· e−c

)
= O

(
1

ε

)
.

This is bad news, since we had hoped to get no such disks. Now unfortunately, S need not
be an ε-net: an arbitrary disk D′ containing at least εn points could contain εn

2
points from

one such canonical disk D, containing cεn points, that has ended up as an empty canonical
disk spanned by S.

Here is the second new idea: take these O
(

1
ε

)
expected number of disks, each containing

roughly cεn points, that have ended up as empty canonical disks spanned by S. For each
such disk D, construct a

(
1
2c

)
-net, say SD, for the set D ∩ P . If we use the sub-optimal

O(1
ε

log 1
ε
) bound from last lecture, we have

|SD| = O(2c log 2c).

Now any disk containing greater than 1
2c
· cεn = εn

2
points from D ∩ P would be hit by SD!

Therefore, the set S ′ = S ∪⋃D SD is an ε-net, with expected size

E [|S|] + E
[
# of empty canonical disks D, |D ∩ P | ≈ cεn, spanned by S

]
·O(2c log 2c)

= np+O

(
1

ε

)
·O (2c log 2c) = O

(
1

ε

)
+O

(
1

ε
· 2c log 2c

)
= O

(
1

ε

)
.

So while it is true that there could be Θ(1
ε
) empty canonical disks spanned by S containing

cεn points of P , for each disk, we can add some O(1) additional points such that a disk
containing εn

2
points from any such disk would be hit by them.

It remains to take care of all canonical disks containing at least εn points. Note that while
the number of disks containing at most k points increases polynomially with k—as O (nk2),
the probability of each ending up as an empty canonical disk decreases exponentially with
k, i.e., as p3 (1− p)k. So essentially the worst case is the above one. We now do the above
calculation for all k, and then sum up to get the size of the final ε-net.

PROOF OF THEOREM 2.1.

Set p = 1
εn

, and add each point of P , independently with probability p, to S. We now add
additional points to S to get our final net N .

For each empty canonical disk D induced by S, do the following. Let i be the index such
that

2i−1 · εn < |D ∩ P | ≤ 2i · εn.
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We will add to N an εi-net SD for the set system induced by disks on D ∩ P , where we set
εi such that any disk containing at least εn

2
points from D ∩ P would be hit by SD. In other

words, we want
εn

2
≥ εi · |D ∩ P |

=⇒ εi ≤
εn

2|D ∩ P | ,

which is satisfied if we set εi = 1
2i+1 .

†

Claim 2.2.
N = S ∪

⋃
D empty canonical
disk induced by S

SD is an ε-net for (P,R).

Proof. Let D′ be any disk in the plane containing at least εn points of P . Then either it is
hit by S, or it contains at least εn

2
points from an empty canonical disk induced by S, say

disk D. Then D′ is hit by SD.

It simply remains to do the required calculations and sum up to bound the size of the final
ε-net N .

For a canonical disk D induced by P , let ID be the indicator random variable which is 1 if
D ends up as an empty canonical disk spanned by S, and 0 otherwise. Then, the expected
number of additional points added are

E

[ ∑
Disks D

ID · |SD|
]

=
∑
D

|SD| · E [ID] =
∑
D

|SD| · Pr [D is an empty canonical disk]

=
∑
D

|SD| · p3 (1− p)|D∩P |

=
∑
i

∑
2iεn<|D∩P |≤2i+1εn

|SD| · p3 (1− p)|D∩P |

≤
∑
i

∣∣{D : 2iεn < |D ∩ P | ≤ 2i+1εn
}∣∣ · (2i+1 log 2i+1

)
· p3 (1− p)2iεn

≤
∑
i

n
(
2i+1εn

)2 ·
(
2i+1 log 2i+1

)
· p3e−p2

iεn

=
∑
i

n
(
22i+2ε2n2

)
·
(
2i+1(i+ 1)

)
· 1

ε3n3
e−2i

=
1

ε

∑
i

23i+3(i+ 1)

e2i

†As 1
2i+1 ≤ εn

2(2iεn) .
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= O

(
1

ε

)
, since the summation is a decreasing geometric series.

The expected size of S is np = 1
ε
, and so S together with

⋃
D SD forms an ε-net of expected

size O
(

1
ε

)
.
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